Pilot and Feasibility Program The purpose of the Pilot and Feasibility Program (PFP) of the Washington University Diabetes Research Center (DRC) is to provide, on a modest scale: (1) initial support for new investigators who do not yet have their own peer-reviewed research support, (2) support for established investigators from other fields of investigation to apply their expertise to diabetes-related research, and (3) support for established investigators in diabetes embarking on an entirely new direction of research. An important goal of the PFP is to allow these investigators to develop preliminary data sufficient to provide the basis for subsequent applications for independent extramural research support. Following an annual competition, awards of up to $50,000 are made to independent faculty level investigators with the potential for renewal for a second year contingent on demonstrated progress. Grant applicants and recipients are mentored by the PFP Director and DRC Co- Director, Dr. Clay Semenkovich. A total of $250,000 of the annual DRC budget is committed to the PFP, to which substantial institutional support is added. Since 2012, the PFP has supported 35 new projects, 26 of which were awarded to new investigators and 2 of which were awarded to early stage investigators. PFP support during the last funding cycle led to 13 NIH and 4 foundation grants and 49 publications. Thus, the PFP has been a highly productive component of the DRC with an emphasis on mentoring and funding young faculty.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK020579-42
Application #
9657023
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2018-12-01
Budget End
2019-11-30
Support Year
42
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Rusconi, B; Jiang, X; Sidhu, R et al. (2018) Gut Sphingolipid Composition as a Prelude to Necrotizing Enterocolitis. Sci Rep 8:10984
Chen, Yana; McCommis, Kyle S; Ferguson, Daniel et al. (2018) Inhibition of the Mitochondrial Pyruvate Carrier by Tolylfluanid. Endocrinology 159:609-621
Zhang, Yan; Rohatgi, Nidhi; Veis, Deborah J et al. (2018) PGC1? Organizes the Osteoclast Cytoskeleton by Mitochondrial Biogenesis and Activation. J Bone Miner Res 33:1114-1125
Xu, Wei; Mukherjee, Sumit; Ning, Yu et al. (2018) Cyclopropane fatty acid synthesis affects cell shape and acid resistance in Leishmania mexicana. Int J Parasitol 48:245-256
Hughes, Jing W; Bao, Yicheng K; Salam, Maamoun et al. (2018) Late-Onset T1DM and Older Age Predict Risk of Additional Autoimmune Disease. Diabetes Care :
Zhang, Xiangyu; Evans, Trent D; Jeong, Se-Jin et al. (2018) Classical and alternative roles for autophagy in lipid metabolism. Curr Opin Lipidol 29:203-211
Ban, Norimitsu; Lee, Tae Jun; Sene, Abdoulaye et al. (2018) Disrupted cholesterol metabolism promotes age-related photoreceptor neurodegeneration. J Lipid Res 59:1414-1423
Ban, Norimitsu; Lee, Tae Jun; Sene, Abdoulaye et al. (2018) Impaired monocyte cholesterol clearance initiates age-related retinal degeneration and vision loss. JCI Insight 3:
Mayer, Allyson L; Zhang, Yiming; Feng, Emily H et al. (2018) Enhanced Hepatic PPAR? Activity Links GLUT8 Deficiency to Augmented Peripheral Fasting Responses in Male Mice. Endocrinology 159:2110-2126
Weber, Kassandra J; Sauer, Madeline; He, Li et al. (2018) PPAR? Deficiency Suppresses the Release of IL-1? and IL-1? in Macrophages via a Type 1 IFN-Dependent Mechanism. J Immunol 201:2054-2069

Showing the most recent 10 out of 654 publications