The Islet Procurement and Analysis Core (IPA Core) was expanded and became a new core of the Vanderbilt DRTC in June 2007. Soon after that the IPA Core was integrated into the Vanderbilt Core Ordering &Reporting Enterprise System. Islet biology, development, and function are major research areas of the Vanderbilt DRTC with investigators studying a variety of islet-related processes ranging from intracellular signaling, the immunology of type 1 diabetes, islet-enriched transcription factors, to islet transplantation. Necessary components of many of their experimental paradigms are high quality, well-characterized pancreatic islets, and reliable assays of islet function and mass. The main objective of the IPA Core is to provide DRTC-affiliated investigators with high quality mouse pancreatic islets. In addition, the core assists investigators in studies of islet function that involve services such as islet culture, islet perifusion, static islet incubation and RNA isolation. An important component of the IPA Core services is training. The IPA Core staff will continue to provide training to graduate students and postdoctoral fellows thus allowing them to gain knowledge and understanding of procedures used in their research. Due to high demand among DRTC-affiliated investigators, the IPA Core added to its equipment Aperio whole slide scanning system and will expand its service portfolio for the assessment of islet mass/morphology in this competitive renewal cycle. This will not only broaden the current DRTC user base, but will also allow us to reach out to non-VUMC users and offer slide scanning and image analysis services. Utilizing Aperio whole slide scanning technology and image analysis tools, the IPA Core will develop standards for pancreatic islet morphometry and measurement of islet mass. By having a centralized facility, the IPA Core provides services to a larger base of investigators at a lower price than would otherwise be possible. Other advantages are quality control, the ability to develop new techniques and applications, the increased potential for collaborative interactions, and immediate access to individuals with a broad experience and knowledge in handling isolated islets.

Public Health Relevance

The IPA Core expands the ability of DRTC-affiliated investigators to perform diabetes-related research and frequently interacts with other DRTC-supported cores. This core allows investigators have technology to assess the function of pancreatic islets which fail in individuals with diabetes.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-S (J1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
United States
Zip Code
King-Morris, Kelli R; Deger, Serpil Muge; Hung, Adriana M et al. (2016) Measurement and Correlation of Indices of Insulin Resistance in Patients on Peritoneal Dialysis. Perit Dial Int 36:433-41
Mani, Bharath K; Osborne-Lawrence, Sherri; Vijayaraghavan, Prasanna et al. (2016) β1-Adrenergic receptor deficiency in ghrelin-expressing cells causes hypoglycemia in susceptible individuals. J Clin Invest 126:3467-78
Gamboa, Jorge L; Billings 4th, Frederic T; Bojanowski, Matthew T et al. (2016) Mitochondrial dysfunction and oxidative stress in patients with chronic kidney disease. Physiol Rep 4:
(2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1-222
Crowder, Spencer W; Balikov, Daniel A; Boire, Timothy C et al. (2016) Copolymer-Mediated Cell Aggregation Promotes a Proangiogenic Stem Cell Phenotype In Vitro and In Vivo. Adv Healthc Mater 5:2866-2871
Beavers, Kelsey R; Werfel, Thomas A; Shen, Tianwei et al. (2016) Porous Silicon and Polymer Nanocomposites for Delivery of Peptide Nucleic Acids as Anti-MicroRNA Therapies. Adv Mater 28:7984-7992
Conrad, Elizabeth; Dai, Chunhua; Spaeth, Jason et al. (2016) The MAFB transcription factor impacts islet α-cell function in rodents and represents a unique signature of primate islet β-cells. Am J Physiol Endocrinol Metab 310:E91-E102
Shaffer, Carrie L; Good, James A D; Kumar, Santosh et al. (2016) Peptidomimetic Small Molecules Disrupt Type IV Secretion System Activity in Diverse Bacterial Pathogens. MBio 7:e00221-16
Delong, Thomas; Wiles, Timothy A; Baker, Rocky L et al. (2016) Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science 351:711-4
Leamy, Alexandra K; Hasenour, Clinton M; Egnatchik, Robert A et al. (2016) Knockdown of triglyceride synthesis does not enhance palmitate lipotoxicity or prevent oleate-mediated rescue in rat hepatocytes. Biochim Biophys Acta 1861:1005-14

Showing the most recent 10 out of 536 publications