The Metabolic Physiology Shared Resource (MPSR) provides investigators with a platform for the design, execution, and interpretation of highly specialized procedures for conducting experiments in vivo. The MPSR facilitates research for investigators in the range of species spanning from mouse to humans. Many of the basic tenets of experimental design are species-Independent permitting resources and expertise to be pooled under the common MPSR umbrella. This philosophy alleviates experimental constraints by providing access to a variety of model systems and provides for seamless translation of basic experimental findings to humans. The impact and benefits of the MPSR are greater than the sum of Its constituent parts. The MPSR uses a defined mechanism for the design and optimization of experimental protocols using an established Studio format. The Studio (i) brings together Vanderbilt scientists with specific expertise to review a proposal;(ii) identifies potential limitations on the front-end;and (iii) leads to the most efficient use of resources including animals and human volunteers. The MPSR makes complex In vivo experiments feasible by providing specialized animal surgical (e.g. catheter placement, bariatric surgery) and experimental (e.g. clamps, energy balance) services. Advancements in the present cycle have led to the development of bariatric surgery procedures and expansion of resources for energy balance measurements In animals that parallel procedures used In human studies conducted by the MPSR. The MPSR has also added a human clamp component. The addition of these vital services fills out the scope of services leading to comprehensive analyses of insulin action and energy balance from rodents to large animals to human subjects. MPSR services will channel into analytical, statistical, and bioinformatics services, thereby enhancing the utility of this resource.

Public Health Relevance

The MPSR gives DRTC investigators studying obesity and diabetes access to novel in vivo animal model systems which can be extended to human subjects. Conversely findings in patient populations can be studied in the MPSR at a more basic level in animals.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-S)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
United States
Zip Code
Kraft, Lewis J; Nguyen, Tuan A; Vogel, Steven S et al. (2014) Size, stoichiometry, and organization of soluble LC3-associated complexes. Autophagy 10:861-77
Gamboa, Alfredo; Okamoto, Luis E; Arnold, Amy C et al. (2014) Autonomic blockade improves insulin sensitivity in obese subjects. Hypertension 64:867-74
Dadi, Prasanna K; Vierra, Nicholas C; Ustione, Alessandro et al. (2014) Inhibition of pancreatic ?-cell Ca2+/calmodulin-dependent protein kinase II reduces glucose-stimulated calcium influx and insulin secretion, impairing glucose tolerance. J Biol Chem 289:12435-45
Flavin, Stephanie A; Matthews, Robert T; Wang, Qin et al. (2014) ?(2A)-adrenergic receptors filter parabrachial inputs to the bed nucleus of the stria terminalis. J Neurosci 34:9319-31
Freeman, Megan Culler; Graham, Rachel L; Lu, Xiaotao et al. (2014) Coronavirus replicase-reporter fusions provide quantitative analysis of replication and replication complex formation. J Virol 88:5319-27
Allen, Ryan M; Vickers, Kasey C (2014) Coenzyme Q10 increases cholesterol efflux and inhibits atherosclerosis through microRNAs. Arterioscler Thromb Vasc Biol 34:1795-7
Limkunakul, Chutatip; Sundell, Mary B; Pouliot, Brianna et al. (2014) Glycemic load is associated with oxidative stress among prevalent maintenance hemodialysis patients. Nephrol Dial Transplant 29:1047-53
Weitkamp, Jörn-Hendrik; Rosen, Michael J; Zhao, Zhiguo et al. (2014) Small intestinal intraepithelial TCR??+ T lymphocytes are present in the premature intestine but selectively reduced in surgical necrotizing enterocolitis. PLoS One 9:e99042
Short, Kurt W; Head, W Steve; Piston, David W (2014) Connexin 36 mediates blood cell flow in mouse pancreatic islets. Am J Physiol Endocrinol Metab 306:E324-31
Wu, Shu-Yu; de Borsetti, Nancy Hernandez; Bain, Emily J et al. (2014) Mediator subunit 12 coordinates intrinsic and extrinsic control of epithalamic development. Dev Biol 385:13-22

Showing the most recent 10 out of 139 publications