The major goal of the Clinical Nutrition Research Unit (CNRU) at the University of Washington is to promote and enhance interdisciplinary nutrition research by bringing together basic science and clinical investigators on a cooperative basis. Because of the multidisciplinary nature of nutrition, close interaction across disciplines and optimal use of resources is necessary to better understand the relationships among diet, health and disease states. By providing a number of Core facilities, the CNRU integrates and coordinates research activities in the field of nutrition and aims to foster new interdisciplinary research collaboration, stimulate new research activities, improve nutrition education at multiple levels and facilitate the nutritional management of patients. The four Cores are: 1) an Animal Studies Core, the Physiology Component of which measures body composition and energy expenditure in rodents, and a Genetic Component, which provides genetically defined mouse models for use in studies of nutrient-gene interactions;2) an Analytic Core to provide Affiliate Investigators with cost-efficient state-of-the-art nutritional assays in both human subjects and experimental animals, and to help with new methods development;3) a Human Studies Core to provide facilities and assistance for investigators with their clinical research, and 4) an Administrative and Enrichment Core that is responsible for the day-to-day administration of the CNRU. This Core also arranges a series of seminars, retreats, and Visiting Professorships, and administers the Pilot and Feasibility and New Investigator Programs. These programs are aimed at stimulating nutrition research by junior investigators and by more established investigators new to the field of nutrition in response to evolving research interests at the University of Washington. This Core also contains a biostatistical component that supports both basic and clinical research. Thus, the CNRU provides facilities and support for the large and varied nutrition research base of the University, which consists of 78 Affiliate Investigators. The major research foci of the University of Washington's CNRU are lipids and atherosclerosis, diabetes and body weight regulation, and obesity, i.e. chronic diseases of major importance to the health of the nation. The presence of the CNRU at the University of Washington stimulates not only research, but also educational and clinical activities in the area of nutrition.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK035816-25
Application #
8116578
Study Section
Special Emphasis Panel (ZDK1-GRB-4 (M1))
Program Officer
Evans, Mary
Project Start
1996-12-01
Project End
2012-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
25
Fiscal Year
2011
Total Cost
$1,178,358
Indirect Cost
Name
University of Washington
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Wright, D R; Lozano, P; Dawson-Hahn, E et al. (2017) Parental optimism about childhood obesity-related disease risks. Int J Obes (Lond) 41:1467-1472
Han, Seung Jin; Boyko, Edward J; Fujimoto, Wilfred Y et al. (2017) Low Plasma Adiponectin Concentrations Predict Increases in Visceral Adiposity and Insulin Resistance. J Clin Endocrinol Metab 102:4626-4633
Den Hartigh, Laura J; Omer, Mohamed; Goodspeed, Leela et al. (2017) Adipocyte-Specific Deficiency of NADPH Oxidase 4 Delays the Onset of Insulin Resistance and Attenuates Adipose Tissue Inflammation in Obesity. Arterioscler Thromb Vasc Biol 37:466-475
Rubinow, Katya B; Henderson, Clark M; Robinson-Cohen, Cassianne et al. (2017) Kidney function is associated with an altered protein composition of high-density lipoprotein. Kidney Int 92:1526-1535
Morton, Gregory J; Muta, Kenjiro; Kaiyala, Karl J et al. (2017) Evidence That the Sympathetic Nervous System Elicits Rapid, Coordinated, and Reciprocal Adjustments of Insulin Secretion and Insulin Sensitivity During Cold Exposure. Diabetes 66:823-834
Anderson, Lindsey J; Tamayose, Jamie M; Garcia, Jose M (2017) Use of growth hormone, IGF-I, and insulin for anabolic purpose: Pharmacological basis, methods of detection, and adverse effects. Mol Cell Endocrinol :
Douglass, John D; Dorfman, Mauricio D; Thaler, Joshua P (2017) Glia: silent partners in energy homeostasis and obesity pathogenesis. Diabetologia 60:226-236
Dorfman, Mauricio D; Krull, Jordan E; Scarlett, Jarrad M et al. (2017) Deletion of Protein Kinase C ? in POMC Neurons Predisposes to Diet-Induced Obesity. Diabetes 66:920-934
Haenisch, Michael; Treuting, Piper M; Brabb, Thea et al. (2017) Pharmacological inhibition of ALDH1A enzymes suppresses weight gain in a mouse model of diet-induced obesity. Obes Res Clin Pract :
Wang, Shari; Goodspeed, Leela; Turk, Katherine E et al. (2017) Rosiglitazone Improves Insulin Resistance Mediated by 10,12 Conjugated Linoleic Acid in a Male Mouse Model of Metabolic Syndrome. Endocrinology 158:2848-2859

Showing the most recent 10 out of 564 publications