The objective ofthe newly-formed Joslin Advanced Genomics and Genetics Core (AGGC) is to provide support to Joslin and external investigators for the study of genome-based mechanisms of disease, by providing equipment, expertise, and services in nucleic acid analysis that would be too specialized or costly for individual laboratories to perform independently. The AGGC originates from the merging of the Joslin Genomics and Genetics Cores in response to the evolving scientific and technological landscape based on (1) the recognition that gene expression changes are mostly responsible for genetic predisposition to complex disorders and (2) the advent of new sequencing technologies providing a unified framework for DNA and RNA studies. The new Core will continue to provide the services previously offered by the two parent Cores, namely DNA extraction from blood, access to DNA collections from the Core's repository, SNP genotyping, and support for gene expression studies based on both high-density oligonucleotide arrays and real-time quantitative PCR. However, its defining objective will be to serve as an interface between Joslin investigators and next-generation sequencing by providing assistance with the complex protocols that must be accomplished in order to generate ready-to-sequence samples and which are often a barrier to sequencing approaches. Specifically, Core personnel will prepare sequencing libraries on behalf of Joslin investigators, will provide a next-generation sequencing service for projects requiring relatively low output, will facilitate investigators'access to external high-output next-generation sequencing platforms for larger projects, and will provide study design and analytical assistance in collaboration with the Boston University- Joslin Regional Computational (BUJRC) Core. Availability of these novel services will facilitate the ongoing transition of Joslin investigators to next-generation genomic methodologies, enhancing their productivity and increasing the cost-effectiveness of their research.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK036836-28
Application #
8725125
Study Section
Special Emphasis Panel (ZDK1-GRB-S)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
28
Fiscal Year
2014
Total Cost
$232,428
Indirect Cost
$62,951
Name
Joslin Diabetes Center
Department
Type
DUNS #
071723084
City
Boston
State
MA
Country
United States
Zip Code
02215
Pavkov, Meda E; Nelson, Robert G; Knowler, William C et al. (2015) Elevation of circulating TNF receptors 1 and 2 increases the risk of end-stage renal disease in American Indians with type 2 diabetes. Kidney Int 87:812-9
Avadhani, Radhika; Fowler, Kristen; Barbato, Corinne et al. (2015) Glycemia and cognitive function in metabolic syndrome and coronary heart disease. Am J Med 128:46-55
Baskaran, Charumathi; Volkening, Lisa K; Diaz, Monica et al. (2015) A decade of temporal trends in overweight/obesity in youth with type 1 diabetes after the Diabetes Control and Complications Trial. Pediatr Diabetes 16:263-70
Rasbach, Lisa; Jenkins, Carolyn; Laffel, Lori (2015) An integrative review of self-efficacy measurement instruments in youth with type 1 diabetes. Diabetes Educ 41:43-58
Castiglioni, Alessandra; Hettmer, Simone; Lynes, Matthew D et al. (2014) Isolation of progenitors that exhibit myogenic/osteogenic bipotency in vitro by fluorescence-activated cell sorting from human fetal muscle. Stem Cell Reports 2:92-106
Markowitz, Jessica T; Volkening, Lisa K; Laffel, Lori M B (2014) Care utilization in a pediatric diabetes clinic: cancellations, parental attendance, and mental health appointments. J Pediatr 164:1384-9
Isganaitis, Elvira; Woo, Melissa; Ma, Huijuan et al. (2014) Developmental programming by maternal insulin resistance: hyperinsulinemia, glucose intolerance, and dysregulated lipid metabolism in male offspring of insulin-resistant mice. Diabetes 63:688-700
Teo, Adrian Kee Keong; Valdez, Ivan Achel; Dirice, Ercument et al. (2014) Comparable generation of activin-induced definitive endoderm via additive Wnt or BMP signaling in absence of serum. Stem Cell Reports 3:5-14
Lee, Hyung-Yul; Wei, Dan; Loeken, Mary R (2014) Lack of metformin effect on mouse embryo AMPK activity: implications for metformin treatment during pregnancy. Diabetes Metab Res Rev 30:23-30
Sanders, Kaitlyn; Jung, Jin Hyuk; Loeken, Mary R (2014) Use of a murine embryonic stem cell line that is sensitive to high glucose environment to model neural tube development in diabetic pregnancy. Birth Defects Res A Clin Mol Teratol 100:584-91

Showing the most recent 10 out of 706 publications