The goal of the Molecular Biology and Next Generation Technologies (MBNGT) Core has been, and will continue to be, to provide essential molecular biology and genetic services in advanced technology areas, and to pioneer new areas of research that promote discovery, hypothesis-driven science and innovation to investigators in the Liver Research Center (LRC).
The specific aims of the MBNGT Core are predominantly two-fold. (1) To continue to provide basic services through the availability of dedicated space in the LRC with shared equipment unavailable in individual investigators laboratories. In addition, the Core Manager will continue to provide individualized teaching and service to facilitate the adaptation of molecular genetic assays and procedures to the wide spectrum of students, postdoctoral fellows, residents, fellows, physician-scientists and principle investigators incorporating these assays into their research. (2) To introduce new services primarily related to the dynamic technologies being rapidly employed in research based on massively parallel sequencing (aka. Next Generation Sequencing (NGS)) and advances in bioinformatics. The MBNGT Core will provide teaching and services allowing LRC scientists to access NGS through preparation of specialized libraries, isolation of exosomes and microRNA for deep sequencing and characterization of the microbiome. The close proximity of the MBNGT facility and the availability of staff to teach, advise experimental approaches, perform highly technical procedures and help interpret complex data sets will serve to enrich the research performed in the LRC.

Public Health Relevance

It is estimated that over 30 million Americans have a liver disorder;further, liver disease is one of the ten leading causes of death in the United States. Although advances have been made in diagnosis and treatment of liver diseases, there is still much to be learned. The Liver Research Center at Einstein provides a multidisciplinary approach to the study of liver disease by integrating basic and clinical research efforts to foster development of new insights and paradigms.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-8 (J2))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Albert Einstein College of Medicine
United States
Zip Code
Lim, Jihyeon; Liu, Zhongbo; Apontes, Pasha et al. (2014) Dual mode action of mangiferin in mouse liver under high fat diet. PLoS One 9:e90137
Wang, Wen-Jun; Murray, John W; Wolkoff, Allan W (2014) Oatp1a1 requires PDZK1 to traffic to the plasma membrane by selective recruitment of microtubule-based motor proteins. Drug Metab Dispos 42:62-9
Yovchev, Mladen I; Xue, Yuhua; Shafritz, David A et al. (2014) Repopulation of the fibrotic/cirrhotic rat liver by transplanted hepatic stem/progenitor cells and mature hepatocytes. Hepatology 59:284-95
Yuan, Fei; Snapp, Erik L; Novikoff, Phyllis M et al. (2014) Human liver cell trafficking mutants: characterization and whole exome sequencing. PLoS One 9:e87043
Mukhopadhyay, Aparna; Quiroz, Jose A; Wolkoff, Allan W (2014) Rab1a regulates sorting of early endocytic vesicles. Am J Physiol Gastrointest Liver Physiol 306:G412-24
Viswanathan, Preeti; Kapoor, Sorabh; Kumaran, Vinay et al. (2014) Etanercept blocks inflammatory responses orchestrated by TNF-? to promote transplanted cell engraftment and proliferation in rat liver. Hepatology 60:1378-88
Bahde, Ralf; Kapoor, Sorabh; Gupta, Sanjeev (2014) Nonselective inhibition of prostaglandin-endoperoxide synthases by naproxen ameliorates acute or chronic liver injury in animals. Exp Mol Pathol 96:27-35
Rogler, Leslie E; Kosmyna, Brian; Moskowitz, David et al. (2014) Small RNAs derived from lncRNA RNase MRP have gene-silencing activity relevant to human cartilage-hair hypoplasia. Hum Mol Genet 23:368-82
Lajoie, Patrick; Fazio, Elena N; Snapp, Erik L (2014) Approaches to imaging unfolded secretory protein stress in living cells. Endoplasmic Reticulum Stress Dis 1:27-39
Kapoor, Sorabh; Berishvili, Ekaterine; Bandi, Sriram et al. (2014) Ischemic preconditioning affects long-term cell fate through DNA damage-related molecular signaling and altered proliferation. Am J Pathol 184:2779-90

Showing the most recent 10 out of 252 publications