The Research Base of the CURE: Digestive Diseases Research Core Center (CURE:DDRCC) is composed of a cohesive group of physicians and basic scientists with strong independent peer-reviewed grant-supported research programs in the biology of the gut, with special emphasis on regulation of mucosal cell function, enteric neuroscience and signal transduction mechanisms. CURE, created in 1974, has grown and evolved into a broadly based gastrointestinal research organization with multiple affiliations, principally the VA and UCLA. Since 1989, a fundamental component of CURE has been the NIDDK-supported CURE: DDRCC. The research emphasis of the Center is acquisition of new knowledge about cellular, molecular and physiological processes that control the function of the digestive system and translation of this knowledge into development of therapy for patients with digestive diseases. The research programs of the CURE: DDRCC members can be broadly divided into four major areas: (1) gastroduodenal mucosal physiology and disease;(2) intestinal and pancreatic physiology and disease;(3) neural regulation of gastroenteric function and neuroenteric disease;and (4) mechanism of action of gastrointestinal peptides, including receptor regulation, signal transduction and control of cell proliferation. The Biomedical Research Cores outlined in this proposal provide ready access to technologies, and to clinical and biological materials that are essential to the programs of center members. These Cores provide access to modern cellular imaging to study signaling proteins and their functions, animal models for studying physiology and pathophysiology, molecular vectors to express a wide variety of proteins and access to a broad range of techniques and patients for clinical studies. The Administrative Core provides a wide range of administrative support for members and for center activities, including a comprehensive and multidisciplinary enrichment program. The Pilot and Feasibility Study and Named New Investigator programs have provided a successful mechanism for promoting the development of new programs in digestive diseases-related research, primarily by young investigators. The Center provides an optimal environment for cooperation and collaboration among its investigators, who have had a major impact on digestive disease research over the past three decades and promise to have an even larger impact with continued support from the Center.

Public Health Relevance

CURE: DDRCC is located at both the VA Greater Los Angeles Heathcare System (VAGLAHS) and at the David Geffen School of Medicine at UCLA, Los Angeles, California. The Administrative Core, Human Studies Core, Animal Models Core and a substantial portion of the Morphology and Celllmaging Core of the CURE: DDRCC are located in Building 115 and in the adjacent Building 113 at the VAGLAHS. The laboratories of many members and associate members are housed here. CURE: DDRCC members in the Departments of Medicine, Neurobiology, Pathology, Pediatrics, Physiology and Surgery are also located on the UCLA campus. Part of the Morphology and Celllmaging Core and Molecular Vectors and Peptidomics Core are housed in laboratories at Warren Hall, the MacDonald Research Laboratories and the Center of Health Science on the UCLA campus.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK041301-23
Application #
8197599
Study Section
Special Emphasis Panel (ZDK1-GRB-8 (M1))
Program Officer
Podskalny, Judith M,
Project Start
1996-12-01
Project End
2014-11-30
Budget Start
2011-12-01
Budget End
2012-11-30
Support Year
23
Fiscal Year
2012
Total Cost
$945,000
Indirect Cost
$195,000
Name
University of California Los Angeles
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Nguyen, Andrew H; Toste, Paul A; Farrell, James J et al. (2015) Current recommendations for surveillance and surgery of intraductal papillary mucinous neoplasms may overlook some patients with cancer. J Gastrointest Surg 19:258-65
Kadera, Brian E; Toste, Paul A; Wu, Nanping et al. (2015) Low expression of the E3 ubiquitin ligase CBL confers chemoresistance in human pancreatic cancer and is targeted by epidermal growth factor receptor inhibition. Clin Cancer Res 21:157-65
Mulak, Agata; Larauche, Muriel; Biraud, Mandy et al. (2015) Selective agonists of somatostatin receptor subtype 1 or 2 injected peripherally induce antihyperalgesic effect in two models of visceral hypersensitivity in mice. Peptides 63:71-80
Stengel, Andreas; Taché, Yvette (2014) Brain peptides and the modulation of postoperative gastric ileus. Curr Opin Pharmacol 19:31-7
Tache, Yvette; Adelson, David; Yang, Hong (2014) TRH/TRH-R1 receptor signaling in the brain medulla as a pathway of vagally mediated gut responses during the cephalic phase. Curr Pharm Des 20:2725-30
Duboc, Henri; Taché, Yvette; Hofmann, Alan F (2014) The bile acid TGR5 membrane receptor: from basic research to clinical application. Dig Liver Dis 46:302-12
Vegezzi, Gaia; Anselmi, Laura; Huynh, Jennifer et al. (2014) Diet-induced regulation of bitter taste receptor subtypes in the mouse gastrointestinal tract. PLoS One 9:e107732
Mayer, Emeran A; Knight, Rob; Mazmanian, Sarkis K et al. (2014) Gut microbes and the brain: paradigm shift in neuroscience. J Neurosci 34:15490-6
Labus, Jennifer S; Dinov, Ivo D; Jiang, Zhiguo et al. (2014) Irritable bowel syndrome in female patients is associated with alterations in structural brain networks. Pain 155:137-49
Fernández-Sánchez, Laura; de Sevilla Müller, Luis Pérez; Brecha, Nicholas C et al. (2014) Loss of outer retinal neurons and circuitry alterations in the DBA/2J mouse. Invest Ophthalmol Vis Sci 55:6059-72

Showing the most recent 10 out of 705 publications