The Animal Model Core (AMC) provides relevant experimental tools and animal models that would support and enhance the research approaches of CURE: DDRCC member in irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), obesity and Parkinson diseases-related Gl dysmotility using mice as a prominent experimental model.-This is achieved through the following services i. Education and training of members on methods, protocols, best practice of animal use, and preparation of animal experimental protocols for institutional approval; ii. Access to well characterized relevant chemical genetic or experimental models of stress, IBS, colitis, visceral obesity and Parkinson disease-related constipation in rats or mice; iii Access to state-of-the art equipment use and training for functional bioassays to assess gastrointestinal propulsive motor function, visceral pain, intestinal permeability and inflammation, food intake microstructure, body composition, energy homeostasis and brain-gut interaction in mice or rats. iv. Performance of drug delivery, collection of body fluid and surgical procedures; v. Access to genetically modified mice via institutional shared resources. The vast array of animal models and methodological approaches offered is made possible through the complementary and well established expertise of the AMC Directors and Personnel in the fields of stress, brain-gut interactions, gut motility, visceral pain, intestinal inflammation and feeding behavior. In particular expertise of AMC Directors lead to substantial methodological advances namely the developed novel noninvasive monitoring of gut motility and visceral pain in conscious mice and acquisition of state-of-the the art equipment (EchoMRI, BIODAQ, metabolic cages and Ussing chambers) during the last granting period. These AMC services are essential not only for the success of the CURE:DDRCC members who are federally funded and anticipate to use the Core (33 members), but are also critical to spur new projects, including the 5 newly federally funded grants on energy metabolism that made use of the new Core equipment and expertise..

Public Health Relevance

The Animal Model Core plays a fundamental role to advance knowledge on several diseases including irritable bowel syndrome, inflammatory bowel diseases, constipation association with neurodegenerative disease and the interaction between the gut and the brain as it relates to food intake and metabolism. The unraveling of new mechanisms and testing new intervention using preclinical models will help to understand these disorders and advance therapeutic venues.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK041301-29
Application #
9392151
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2017-12-01
Budget End
2018-11-30
Support Year
29
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of California Los Angeles
Department
Type
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Kaji, I; Akiba, Y; Furuyama, T et al. (2018) Free fatty acid receptor 3 activation suppresses neurogenic motility in rat proximal colon. Neurogastroenterol Motil 30:
Kim, Paul H; Luu, Jennings; Heizer, Patrick et al. (2018) Disrupting the LINC complex in smooth muscle cells reduces aortic disease in a mouse model of Hutchinson-Gilford progeria syndrome. Sci Transl Med 10:
Dong, Tien S; Aby, Elizabeth S; Benhammou, Jihane N et al. (2018) Metabolic syndrome does not affect sustained virologic response of direct-acting antivirals while hepatitis C clearance improves hemoglobin A1c. World J Hepatol 10:612-621
Chen, Natalie Y; Kim, Paul; Weston, Thomas A et al. (2018) Fibroblasts lacking nuclear lamins do not have nuclear blebs or protrusions but nevertheless have frequent nuclear membrane ruptures. Proc Natl Acad Sci U S A 115:10100-10105
Videlock, Elizabeth J; Mahurkar-Joshi, Swapna; Hoffman, Jill M et al. (2018) Sigmoid colon mucosal gene expression supports alterations of neuronal signaling in irritable bowel syndrome with constipation. Am J Physiol Gastrointest Liver Physiol 315:G140-G157
Zhou, Haoming; Wang, Han; Ni, Ming et al. (2018) Glycogen synthase kinase 3? promotes liver innate immune activation by restraining AMP-activated protein kinase activation. J Hepatol 69:99-109
Larauche, Muriel; Moussaoui, Nabila; Biraud, Mandy et al. (2018) Brain corticotropin-releasing factor signaling: Involvement in acute stress-induced visceral analgesia in male rats. Neurogastroenterol Motil :e13489
Lin, De-Chen; Wang, Ming-Rong; Koeffler, H Phillip (2018) Genomic and Epigenomic Aberrations in Esophageal Squamous Cell Carcinoma and Implications for Patients. Gastroenterology 154:374-389
Van, Christina; Condro, Michael C; Lov, Kenny et al. (2018) PACAP/PAC1 Regulation of Inflammation via Catecholaminergic Neurons in a Model of Multiple Sclerosis. J Mol Neurosci :
Hoffman, Jill M; Sideri, Aristea; Ruiz, Jonathan J et al. (2018) Mesenteric Adipose-derived Stromal Cells From Crohn's Disease Patients Induce Protective Effects in Colonic Epithelial Cells and Mice With Colitis. Cell Mol Gastroenterol Hepatol 6:1-16

Showing the most recent 10 out of 1097 publications