The Host-Microbe Core (HMC) has evolved from the original Cell Biology core which was intended to help DDRCC members study cell structure and function. This change coincided with the decision of past funding cycle to intensify the DDRCC focus on IBD and IBD-related fields. In this regard, the study of the enteric microbiome and host-microbe interactions has come to the forefront of IBD research because of the increasing realization that it is a caused by an unfortunate combination of potentially disease-promoting commensal bacterial on a background of host genetic susceptibility. The development of the Host-Microbe core was therefore timely because it anticipated the growing needs of our investigators to better understand the complex interactions between host and gut microbes. Two of three original components of the Cell Biology Core were changed. Only the Cell/Tissue Systems component, which provides cells and cell-based systems for elucidation of mechanisms mediating cell-cell relationships, was retained. Most of the cell physiology component, including patch-clamp electrophysiology, was removed largely because of declining usage. The structural biology component was moved to the Tissue and Cell Analysis Core where all light and digital imaging technologies now reside. In their place, the gnotobiotic and enteric microbiology components have been added which provide new opportunities for investigators to comprehensively study host-microbe interactions. Both components incorporate new technologies, experimental models, and expertise that bear on the study of healthy gut as well as inflammatory bowel diseases and related disorders. Together, the components have significantly advanced the capabilities of our DDRCC investigators to study fundamental questions in human-based and experimental research. The Administrative Director of the HMC, Dr. Eugene Chang, oversees the operations of all components and also serves as the Director of the Cell/Tissue Systems component. Drs. Antonopoulos and Chervonsky direct the Enteric Microbiology and Gnotobiotic components, respectively. Directors are responsible for insuring proper scientific direction and the integration and efficient use of services and facilities of their respective components. In summary, the HMC is the most heavily used Core of the DDRCC. It has enabled our investigators to study previously unexplored aspects of host-microbial interactions, using a variety of cutting edge approaches that span from reductionist systems to in vivo models. The HMC is also vital to the translational research effort at the University of Chicago that has become prominent in the area of IBD.

Public Health Relevance

The study of the host-microbe interactions is essential for understanding the cause of IBD because of the increasing realization that this disease results from an unfortunate combination of disease-promoting colonic bacteria on a background of host genetic susceptibility. The Host-Microbe core provides our investigators with advanced technologies and cost-effective services to address complex questions of IBD pathogenesis.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-8)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Chicago
United States
Zip Code
Cockrell, Chase; An, Gary (2017) Sepsis reconsidered: Identifying novel metrics for behavioral landscape characterization with a high-performance computing implementation of an agent-based model. J Theor Biol 430:157-168
Pekow, Joel; Meckel, Katherine; Dougherty, Urszula et al. (2017) miR-193a-3p is a Key Tumor Suppressor in Ulcerative Colitis-Associated Colon Cancer and Promotes Carcinogenesis through Upregulation of IL17RD. Clin Cancer Res 23:5281-5291
Messer, Jeannette S (2017) The cellular autophagy/apoptosis checkpoint during inflammation. Cell Mol Life Sci 74:1281-1296
An, G; Fitzpatrick, B G; Christley, S et al. (2017) Optimization and Control of Agent-Based Models in Biology: A Perspective. Bull Math Biol 79:63-87
Arvans, Donna; Jung, Yong-Chul; Antonopoulos, Dionysios et al. (2017) Oxalobacter formigenes-Derived Bioactive Factors Stimulate Oxalate Transport by Intestinal Epithelial Cells. J Am Soc Nephrol 28:876-887
Nobutani, Kentaro; Miyoshi, Jun; Musch, Mark W et al. (2017) Daikenchuto (TU-100) alters murine hepatic and intestinal drug metabolizing enzymes in an in vivo dietary model: effects of gender and withdrawal. Pharmacol Res Perspect 5:
Messer, J S; Liechty, E R; Vogel, O A et al. (2017) Evolutionary and ecological forces that shape the bacterial communities of the human gut. Mucosal Immunol 10:567-579
Nie, Litong; Shuai, Lin; Zhu, Mingrui et al. (2017) The Landscape of Histone Modifications in a High-Fat Diet-Induced Obese (DIO) Mouse Model. Mol Cell Proteomics 16:1324-1334
Denzin, Lisa K; Khan, Aly A; Virdis, Francesca et al. (2017) Neutralizing Antibody Responses to Viral Infections Are Linked to the Non-classical MHC Class II Gene H2-Ob. Immunity 47:310-322.e7
Miyoshi, Jun; Bobe, Alexandria M; Miyoshi, Sawako et al. (2017) Peripartum Antibiotics Promote Gut Dysbiosis, Loss of Immune Tolerance, and Inflammatory Bowel Disease in Genetically Prone Offspring. Cell Rep 20:491-504

Showing the most recent 10 out of 633 publications