The Genomic and Molecular Engineering (GME) Core of the DDRCC provides cutting-edge technologies for the analysis and manipulation of the genetic material. These new technologies empower DDRCC members to pinpoint and characterize genetic factors that influence the development and course of digestive diseases and to dissect gene functions In important pathways relevant to digestive diseases. The GME is a new Core, restructured from the former Molecular Biology and Biochemistry Core. The GME Core divided into two components. The Genotype Analysis component offers sen/ices relating to the genetic analysis of patient samples. The services of the Genotype Analysis component Include (1) customized single nucleotide polymorphism (SNP) genotyping based on the Sequenom Massanray genotyping platfonn, (2) standard SNP genotyping panels for high-Interest genes, (3) ultra-high throughput DNA sequence analysis for genotyping, (4) other genotype analysis methods (such as TaqMan), (5) DNA preparation, and (6) statistical genetics support. The Genetic Engineering component offers services relating to the manipulation of genes in cellular and organismal model systems. The services ofthe Genetic Engineering component include (1) somatic cell genetic manipulation of genes using homologous recombination to knock in or knock out mutations, (2) recombineering technologies to manipulate large DNA segments in bacterial artificial chromosomes, (3) the construction of gene expression constructs using lentiviral vectors for ectopic expression or silencing of genes, (4) support for realtime PCR, and (5) support for the Odyssey image analysis system. The GME Core supports members for genotype analysis and genetic engineering experiments by supporting labor cost, providing discounts for reagents, and training members in new technologies. The Administrative Directors of the GME Core, Drs. Nathan Ellis and David Boone, oversee the operations of the respective components. Directors are responsible for ensuring proper scientific direction and efficient use of services and facilities of the component resources. Usage of the GME Core rapidly increased from start-up because of substantial cost savings, relevance, and high quality of services and resources, and it is anticipated usage will grow substantially during the next cycle of this Grant. Each of the Components offers training of new and established investigators unfamiliar with the supported experimental approaches. The GME Core has helped to foster multidisciplinary collaborations and promote productive exchanges brought about by sharing of resources.

Public Health Relevance

The cutting-edge technological services provided by the Core facilitates the genetic analysis and characterization of genes that are important to the development and course of digestive diseases, including inflammatory bowel disease and colorectal cancer.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-8)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Chicago
United States
Zip Code
Yankeelov, Thomas E; An, Gary; Saut, Oliver et al. (2016) Multi-scale Modeling in Clinical Oncology: Opportunities and Barriers to Success. Ann Biomed Eng 44:2626-41
Wesemann, Duane R; Nagler, Cathryn R (2016) The Microbiome, Timing, and Barrier Function in the Context of Allergic Disease. Immunity 44:728-38
Antonopoulos, Dionysios A; Chang, Eugene B (2016) Transplanting a Microbial Organ: the Good, the Bad, and the Unknown. MBio 7:
Ward, Marc A; Pierre, Joseph F; Leal, Raquel F et al. (2016) Insights into the pathogenesis of ulcerative colitis from a murine model of stasis-induced dysbiosis, colonic metaplasia, and genetic susceptibility. Am J Physiol Gastrointest Liver Physiol 310:G973-88
Raffals, Laura E; Chang, Eugene B (2016) Navigating the Microbial Basis of Inflammatory Bowel Diseases: Seeing the Light at the End of the Tunnel. Gut Liver 10:502-8
Howe, Adina; Ringus, Daina L; Williams, Ryan J et al. (2016) Divergent responses of viral and bacterial communities in the gut microbiome to dietary disturbances in mice. ISME J 10:1217-27
Ojeda, Patricia; Bobe, Alexandria; Dolan, Kyle et al. (2016) Nutritional modulation of gut microbiota - the impact on metabolic disease pathophysiology. J Nutr Biochem 28:191-200
Tao, Yun; Messer, Jeannette S; Goss, Kathleen H et al. (2016) Hsp70 exerts oncogenic activity in the Apc mutant Min mouse model. Carcinogenesis 37:731-9
Shi, Yongyan; Liu, Tianjing; He, Lei et al. (2016) Activation of the Renin-Angiotensin System Promotes Colitis Development. Sci Rep 6:27552
Collins, Brian; Hoffman, Jessie; Martinez, Kristina et al. (2016) A polyphenol-rich fraction obtained from table grapes decreases adiposity, insulin resistance and markers of inflammation and impacts gut microbiota in high-fat-fed mice. J Nutr Biochem 31:150-65

Showing the most recent 10 out of 600 publications