The main purpose of this combined core is to provide a comprehensive service using state-of-the-art molecular and genetic methods to generate a variety of sophisticated knock-in, knock-out and transgenic mice for DRC investigators in their type 1 and type 2 diabetes research. We have successfully generated many lines of knock-in, knock-out and transgenic mice related to diabetes studies. It is noteworthy three ofthe highlights among all the animals generated during the previous funding cycle. Firstly, humanized mice, which carry 5 human genes by sequential re-targeting the same ES cells. The engraftment of human fetal liver-derived CD34+ hematopoietic stem cells can reach nearly 100% and last up to 9 months in this humanized mouse. Secondly, lines of innate immunity deficient NOD mice for the studies of type 1 diabetes, especially in association with exogenous and endogenous environmental factors. Using MyD88 deficient NOD mice generated by the core, DRC investigators demonstrated the importance of commensal flora in type 1 diabetes development and gut flora is an environmental modifier that influence diabetes onset Thirdly, lines of inflammsome deficient B6 mice for the studies of metabolic syndrome and type 2 diabetes. DRC investigators found that inflammasomes NLRP3 and NLRP6 negatively regulate NAFLD progression and obesity via modulation ofthe gut flora. This combined core consists of three subcores - Molecular, Gene targeting and Mouse breeding (MGM) components. Each subcore has its distinct function while all is interconnected. We will continue to provide our outstanding service for Yale DRC community. Moleculai: subcore will increase the use of improved high efficiency BAC mutagenesis to facilitate the generation of customized constructs for both type 1 and type 2 diabetes studies. Together with Molecular subcore. Gene targeting subcore will extend the humanized mouse model systems to include diabetes-related genes in order to evaluate preclinical testing of new therapies and/or vaccines, by our DRC investigators, for treatment and prevention type 1 diabetes. Mouse breeding subcore will backcross the improved humanized mouse lines to NOD background and several lines of infammasome deficient mice to pure NOD background forthe studies of type 1 diabetes.

Public Health Relevance

The creation of novel mouse models through genetic engineering provides new insights into the mechanisms responsible for the development of human diabetes and a means of testing novel therapies for the disease.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-S)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Yale University
New Haven
United States
Zip Code
Zhang, Yongdeng; Lara-Tejero, María; Bewersdorf, Jörg et al. (2017) Visualization and characterization of individual type III protein secretion machines in live bacteria. Proc Natl Acad Sci U S A 114:6098-6103
Varela, Luis; Suyama, Shigetomo; Huang, Yan et al. (2017) Endothelial HIF-1? Enables Hypothalamic Glucose Uptake to Drive POMC Neurons. Diabetes 66:1511-1520
Park, Jin-Kyu; Shao, Mingjie; Kim, Moon Young et al. (2017) An endoplasmic reticulum protein, Nogo-B, facilitates alcoholic liver disease through regulation of kupffer cell polarization. Hepatology 65:1720-1734
Thompson, Alexander D; Bewersdorf, Joerg; Toomre, Derek et al. (2017) HIDE Probes: A New Toolkit for Visualizing Organelle Dynamics, Longer and at Super-Resolution. Biochemistry 56:5194-5201
Jelenik, Tomas; Kaul, Kirti; Séquaris, Gilles et al. (2017) Mechanisms of Insulin Resistance in Primary and Secondary Nonalcoholic Fatty Liver. Diabetes 66:2241-2253
Perry, Rachel J; Peng, Liang; Abulizi, Abudukadier et al. (2017) Mechanism for leptin's acute insulin-independent effect to reverse diabetic ketoacidosis. J Clin Invest 127:657-669
Lees, Joshua A; Messa, Mirko; Sun, Elizabeth Wen et al. (2017) Lipid transport by TMEM24 at ER-plasma membrane contacts regulates pulsatile insulin secretion. Science 355:
Chowdhury, Golam M I; Wang, Peili; Ciardi, Alisha et al. (2017) Impaired Glutamatergic Neurotransmission in the Ventromedial Hypothalamus May Contribute to Defective Counterregulation in Recurrently Hypoglycemic Rats. Diabetes 66:1979-1989
Sun, Emily W; de Fontgalland, Dayan; Rabbitt, Philippa et al. (2017) Mechanisms Controlling Glucose-Induced GLP-1 Secretion in Human Small Intestine. Diabetes 66:2144-2149
Lee, Hui-Young; Lee, Jae Sung; Alves, Tiago et al. (2017) Mitochondrial-Targeted Catalase Protects Against High-Fat Diet-Induced Muscle Insulin Resistance by Decreasing Intramuscular Lipid Accumulation. Diabetes 66:2072-2081

Showing the most recent 10 out of 566 publications