The primary objective of the Physiology Core is to provide DRC members with access to centralized facilities, services and technical expertise to address complex metabolic questions related to diabetes using normal, diabetic or genetically modified rodent models (including rats, and in some cases mice). This fee-for service Core consists of two Sub-cores, the Animal Surgery and Experimental Procedure Sub-core and the Analytical Sub-core, each of which contains specialized equipment and key personnel to help DRC investigators and/or their trainees achieve their tasks in the most efficient and cost-effective manner. It also serves as a forum for collaboration between members with different research backgrounds but a common interest in studying diabetes. Through the Animal Surgery and Experimental Procedure Sub-core, DRC investigators can access training courses, equipment, laboratory facilities and technical expertise to perform surgeries for stereotaxis and the placement of vascular catheters and other implantables, as well as carry out complex metabolic studies using specialized experimental methodologies (e.g. glucose clamps, tracers, microdialysis and amperometric studies) in conscious rodents - skills that are not easily accessible to investigators without previous training or experience. The Analytical Sub-core provides DRC members with a central facility for the measurement of glucoregulatory hormones, cytokines and neurotransmitters derived from the animal studies. This component of the Physiology Core benefits from the expertise and equipment of an on-going and prolific radioimmunoassay and HPLC facility which has recently incorporated Luminex technology and tandem mass spectrometry for measuring cytokines and neurotransmitters, respectively. In addition, DRC investigators can now profile a focused panel of genes using PCR array technology through this sub-core. Together, these two sub-cores provide DRC members with the unique opportunity to systematically address pertinent mechanistic questions in vivo and to assess metabolic changes in both the central nervous system and peripheral tissues in the most efficient and economical manner.

Public Health Relevance

The Physiology Core aims to promote innovative and collaborative research amongst its members by providing the basic infrastructure to assist those who wish to direct their unique expertise towards understanding the pathophysiology of diabetes and its complications using in vivo physiological approaches.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-S)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Yale University
New Haven
United States
Zip Code
Roshandel, Delnaz; Klein, Ronald; Klein, Barbara E K et al. (2016) New Locus for Skin Intrinsic Fluorescence in Type 1 Diabetes Also Associated With Blood and Skin Glycated Proteins. Diabetes 65:2060-71
Huang, Fang; Sirinakis, George; Allgeyer, Edward S et al. (2016) Ultra-High Resolution 3D Imaging of Whole Cells. Cell 166:1028-40
Jeong, Jaekwang; VanHouten, Joshua N; Dann, Pamela et al. (2016) PMCA2 regulates HER2 protein kinase localization and signaling and promotes HER2-mediated breast cancer. Proc Natl Acad Sci U S A 113:E282-90
Tai, Ningwen; Peng, Jian; Liu, Fuqiang et al. (2016) Microbial antigen mimics activate diabetogenic CD8 T cells in NOD mice. J Exp Med 213:2129-46
Kumamoto, Yosuke; Camporez, Joao Paulo G; Jurczak, Michael J et al. (2016) CD301b(+) Mononuclear Phagocytes Maintain Positive Energy Balance through Secretion of Resistin-like Molecule Alpha. Immunity 45:583-96
Nagarajan, Arvindhan; Petersen, Max C; Nasiri, Ali R et al. (2016) MARCH1 regulates insulin sensitivity by controlling cell surface insulin receptor levels. Nat Commun 7:12639
Costa, Diana K; Huckestein, Brydie R; Edmunds, Lia R et al. (2016) Reduced intestinal lipid absorption and body weight-independent improvements in insulin sensitivity in high-fat diet-fed Park2 knockout mice. Am J Physiol Endocrinol Metab 311:E105-16
Jaser, Sarah S; Patel, Niral; Xu, Meng et al. (2016) Stress and Coping Predicts Adjustment and Glycemic Control in Adolescents with Type 1 Diabetes. Ann Behav Med :
Saggar, Manish; Tsalikian, Eva; Mauras, Nelly et al. (2016) Compensatory Hyper-Connectivity in Developing Brains of Young Children with Type 1 Diabetes. Diabetes :
Sun, Xue; Veldhuizen, Maria G; Babbs, Amanda E et al. (2016) Perceptual and Brain Response to Odors Is Associated with Body Mass Index and Postprandial Total Ghrelin Reactivity to a Meal. Chem Senses 41:233-48

Showing the most recent 10 out of 530 publications