The Yale-DRC Clinical Metabolism Core provides comprehensive support for investigators conducting clinical investigations of human diseases of metabolism such as diabetes. The primary emphasis of this core is to provide analytical resources for patient-oriented studies utilizing stable isotopes to determine metabolic flux at the whole body and tissue specific levels. Secondarily, the core also makes its analytical resources available to researchers utilizing rat and cell models of human metabolic diseases. Stable isotopes offer unique advantages over traditional radioisotopic methods for assessing substrate turnover in humans as they do not expose subjects to ioniziing radiation and they provide positional isotopomer information that can be used to assess flux through critical metabolic pathways. The major limitation to the use of stable isotopes by the clinical investigator is the need for sophisticated and expensive instrumentation and highly skilled expertise for instrument operation and for data analysis and interpretation. The Yale-DRC Clinical Metabolism Core removes these obstacles by providing the personnel and resources needed for the extraction, purification, derivatization, and instrumental analysis needed to determine the concentrations and isotopic enrichments of metabolites in plasm a, urine, or tissues. This core measures the isotopic (e.g., 2H, 13C, 15N, and 18O) enrichment and concentrations of over 140 intermediary metabolites by GC-MS, LC/MS/MS, and NMR for the calculation of turnover of carbohydrates, lipids, and proteins. The primary purposes of the Yale-DRC Clinical Metabolism Core are to: 1) make GC-MS, LC- MS/MS, and NMR analyses available to Yale DRC members, 2) avoid duplication of costs associated with personnel and instrumentation, 3.) provide standardized protocols to insure consistent and accurate sample analysis, 4) assist Yale DRC researchers in the design and interpretation of experiments utilizing stable isotopes for measurement of metabolic flux, 5.) develop new methodology in response to the emerging research needs of Yale DRC members.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
2P30DK045735-26
Application #
9443395
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2018-03-01
Budget End
2019-01-31
Support Year
26
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Yale University
Department
Type
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
Bian, Xin; Saheki, Yasunori; De Camilli, Pietro (2018) Ca2+ releases E-Syt1 autoinhibition to couple ER-plasma membrane tethering with lipid transport. EMBO J 37:219-234
Dong, Rui; Zhu, Ting; Benedetti, Lorena et al. (2018) The inositol 5-phosphatase INPP5K participates in the fine control of ER organization. J Cell Biol 217:3577-3592
Barentine, Andrew E S; Schroeder, Lena K; Graff, Michael et al. (2018) Simultaneously Measuring Image Features and Resolution in Live-Cell STED Images. Biophys J 115:951-956
Jelenik, Tomas; Flögel, Ulrich; Álvarez-Hernández, Elisa et al. (2018) Insulin Resistance and Vulnerability to Cardiac Ischemia. Diabetes 67:2695-2702
Sherr, Jennifer L (2018) Closing the Loop on Managing Youth With Type 1 Diabetes: Children Are Not Just Small Adults. Diabetes Care 41:1572-1578
Goedeke, Leigh; Bates, Jamie; Vatner, Daniel F et al. (2018) Acetyl-CoA Carboxylase Inhibition Reverses NAFLD and Hepatic Insulin Resistance but Promotes Hypertriglyceridemia in Rodents. Hepatology 68:2197-2211
RISE Consortium (2018) Metabolic Contrasts Between Youth and Adults With Impaired Glucose Tolerance or Recently Diagnosed Type 2 Diabetes: II. Observations Using the Oral Glucose Tolerance Test. Diabetes Care 41:1707-1716
Gassaway, Brandon M; Petersen, Max C; Surovtseva, Yulia V et al. (2018) PKC? contributes to lipid-induced insulin resistance through cross talk with p70S6K and through previously unknown regulators of insulin signaling. Proc Natl Acad Sci U S A 115:E8996-E9005
Gülden, Elke; Chao, Chen; Tai, Ningwen et al. (2018) TRIF deficiency protects non-obese diabetic mice from type 1 diabetes by modulating the gut microbiota and dendritic cells. J Autoimmun 93:57-65
RISE Consortium (2018) Metabolic Contrasts Between Youth and Adults With Impaired Glucose Tolerance or Recently Diagnosed Type 2 Diabetes: I. Observations Using the Hyperglycemic Clamp. Diabetes Care 41:1696-1706

Showing the most recent 10 out of 620 publications