The Human Genome Project and the development of the expressed sequence tag (EST) clone collection and database have revolutionized gene expression analysis. Instead of measuring one or a few genes, parallel DNA microarrays are capable of simultaneously measuring expression of thousands of genes, providing a glimpse into the logic and functional grouping of gene programs encoded by our genome. The term functional genomics encompasses varied approaches that provide a more global investigation into the expression and role of groups of genes in a physiologic process than has been previously available. As such, this approach represents a fundamental shift from the traditional 'one gene at a time'approach to the study of basic biological processes. cDNA microarrays and oligonucleotide-based microarray methodologies have the potential to provide a new level of information about cell or tissue function not previously possible. However, these technologies require an investment in expensive equipment and highly trained, experienced technicians. Most laboratories cannot afford to commit the substantial technical resources and personnel to the development and ongoing refinement of these particularly complex experimental methods. It is more cost effective to concentrate this instrumentation and highly skilled technical support in a centrally managed facility, where they will be efficiently utilized and cost effective. The Functional Genomics Core Facility was designed to provide this critical core expertise to the digestive disease research community. The unique feature of the Functional Genomics Core Facility is the expertise it provides to participating investigators on the application of high density comprehensive arrays to study gastrointestinal and hepatic qene expression. In maintaining an independent microarray core, DDRCC research investigators are provided with access to the Agilent platforms at extremely low costs ($275/2 sample comparisons using the 44K gene arrays) and with much more rapid turn around time (<5 days) than other microarray facilities in the institution. The close proximity of the Functional Genomics Core to the DDRCC Morphology Core and the DDRCC Tissue Procurement Facility greatly facilitates the processing and analysis of clinical samples related to digestive disease disorders. The DDRCC Functional Genomics Core works closely with other microarray facilities at this institution that offer alternative commercial platforms, such as the Affymetrix platforms supported by the CTSA sponsored Translational Pathology and Tissue Banking Core, and the Illumina platforms supported by the Genome Sequencing Center of Washington University. Important for tight budgets, the cost of our services is less than half the cost of a single sample Affy array, and is about 20% less than the Illumina platform. Just as important, the Functional Genomics Core provides integrative and bioinformatic services.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK052574-13
Application #
8375021
Study Section
Special Emphasis Panel (ZDK1-GRB-8)
Project Start
Project End
Budget Start
2011-12-01
Budget End
2012-11-30
Support Year
13
Fiscal Year
2012
Total Cost
$165,636
Indirect Cost
$56,665
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Strubberg, Ashlee M; Veronese Paniagua, Daniel A; Zhao, Tingting et al. (2018) The Zinc Finger Transcription Factor PLAGL2 Enhances Stem Cell Fate and Activates Expression of ASCL2 in Intestinal Epithelial Cells. Stem Cell Reports 11:410-424
Patel, A; Hasak, S; Nix, B D et al. (2018) Genetic risk factors for perception of symptoms in GERD: an observational cohort study. Aliment Pharmacol Ther 47:289-297
Hibberd, Timothy J; Feng, Jing; Luo, Jialie et al. (2018) Optogenetic Induction of Colonic Motility in Mice. Gastroenterology 155:514-528.e6
Mayer, Allyson L; Zhang, Yiming; Feng, Emily H et al. (2018) Enhanced Hepatic PPAR? Activity Links GLUT8 Deficiency to Augmented Peripheral Fasting Responses in Male Mice. Endocrinology 159:2110-2126
Wardill, Hannah R; Van Sebille, Ysabella Z A; Ciorba, Matthew A et al. (2018) Prophylactic probiotics for cancer therapy-induced diarrhoea: a meta-analysis. Curr Opin Support Palliat Care 12:187-197
Osaki, Luciana H; Bockerstett, Kevin A; Wong, Chun Fung et al. (2018) Interferon-? directly induces gastric epithelial cell death and is required for progression to metaplasia. J Pathol :
Chandrasekaran, Sukantha; Burnham, Carey-Ann D; Warner, Barbara B et al. (2018) Carriage of Cronobacter sakazakii in the Very Preterm Infant Gut. Clin Infect Dis 67:269-274
Tarr, Gillian A M; Oltean, Hanna N; Phipps, Amanda I et al. (2018) Case definitions of hemolytic uremic syndrome following Escherichia coli O157:H7 infection vary in validity. Int J Med Microbiol 308:1121-1127
Wang, Songyan; Oestricker, Lauren Z; Wallendorf, Michael J et al. (2018) Cholinergic signaling mediates the effects of xenin-25 on secretion of pancreatic polypeptide but not insulin or glucagon in humans with impaired glucose tolerance. PLoS One 13:e0192441
Jiang, Hongmei; Xu, Mai; Li, Lin et al. (2018) Concurrent HER or PI3K Inhibition Potentiates the Antitumor Effect of the ERK Inhibitor Ulixertinib in Preclinical Pancreatic Cancer Models. Mol Cancer Ther 17:2144-2155

Showing the most recent 10 out of 899 publications