Morphologic analysis remains an essential tool for visualizing the spatial relationships of different cell types, and studying cellular components in the Gl tract. The unique feature of this Morphology Core Facility is the expertise it provides to participating investigators on the structural biology of the Gl tract. Its primary function has been to train and assist investigators in the morphologic analysis of the Gl tract It has also served as an important resource for rapid processing of tissue specimens and for providing investigators with newly developed methods/protocols and reagents for labeling tissue sections. Before the establishment of this Core, DDRCC investigators had poor access to histology services (limited availability, long turn-around, variable quality, and high fees). Because many DDRCC investigators are junior faculty with limited resources, funding for, and access to, the Morphology core has benefited this group, as well as more senior investigators (see Exhibit). This core has provides expert technical service related to the processing of Gl tissue and cell samples. These functions require investment in expensive equipment, and sample preparation and operation of sophisticated instrumentation require highly trained experienced technicians. It is, therefore, much more cost effective to concentrate instrumentation and highly skilled technical support in a centrally managed facility where they can be utilized a high percentage ofthe time. The DDRCC Morphology Core is the onlv histology facilitv at this institution that provides immunohistochemical staining on a fee for service basis. The Morphology Core also serves as a focus for the collective expertise at this institution and rapid dissemination of new techniques. It facilitates exchange of reagents such as antibodies and tissue blocks, and has fostered many collaborations between DDRCC members.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK052574-15
Application #
8574511
Study Section
Special Emphasis Panel (ZDK1-GRB-8)
Project Start
Project End
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
15
Fiscal Year
2014
Total Cost
$174,626
Indirect Cost
$59,740
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Zhang, Daoxiang; Li, Lin; Jiang, Hongmei et al. (2017) Constitutive IRAK4 Activation Underlies Poor Prognosis and Chemoresistance in Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 23:1748-1759
Knoop, Kathryn A; Gustafsson, Jenny K; McDonald, Keely G et al. (2017) Antibiotics promote the sampling of luminal antigens and bacteria via colonic goblet cell associated antigen passages. Gut Microbes 8:400-411
Sáenz, José B; Mills, Jason C (2017) Biological techniques: Stomach growth in a dish. Nature 541:160-161
Feng, Jing; Yang, Pu; Mack, Madison R et al. (2017) Sensory TRP channels contribute differentially to skin inflammation and persistent itch. Nat Commun 8:980
Burclaff, Joseph; Osaki, Luciana H; Liu, Dengqun et al. (2017) Targeted Apoptosis of Parietal Cells Is Insufficient to Induce Metaplasia in Stomach. Gastroenterology 152:762-766.e7
Lu, Zhi Hong; Kaliberov, Sergey; Sohn, Rebecca E et al. (2017) A new model of multi-visceral and bone metastatic prostate cancer with perivascular niche targeting by a novel endothelial specific adenoviral vector. Oncotarget 8:12272-12289
Elo, Teresa; Lindfors, Päivi H; Lan, Qiang et al. (2017) Ectodysplasin target gene Fgf20 regulates mammary bud growth and ductal invasion and branching during puberty. Sci Rep 7:5049
Barron, Lauren K; Warner, Barbara B; Tarr, Phillip I et al. (2017) Independence of gut bacterial content and neonatal necrotizing enterocolitis severity. J Pediatr Surg 52:993-998
Radyk, Megan D; Burclaff, Joseph; Willet, Spencer G et al. (2017) Metaplastic Cells in the Stomach Arise, Independently of Stem Cells, via Dedifferentiation or Transdifferentiation of Chief Cells. Gastroenterology :
Oetjen, Landon K; Mack, Madison R; Feng, Jing et al. (2017) Sensory Neurons Co-opt Classical Immune Signaling Pathways to Mediate Chronic Itch. Cell 171:217-228.e13

Showing the most recent 10 out of 830 publications