The overarching goal of the Washington University Digestive Disease Research Core Center, (WU-DDRCC) is to assist investigators exploring the foundations of host-environment interactions in the pathophysiology of digestive diseases. The WU-DDRCC seeks to advance the health of patients with digestive diseases by supporting enabling technology and promoting the basic and translational research interests of its 49 Full + 11 Associate members, he DDRCC promotes the expertise and interests of the Research Base in a comprehensive program that is strategically aligned with the distinguishing institutional strengths in human genetics and the microbiome. The Center is justified by the needs of its members and has adapted to provide core support and enabling technology that expands members' research capacity through core laboratories that provide training, technical support and a unique centralized resource for organization of clinical metadata and biospecimens. In addition, the Center provides a Pilot/Feasibility Program that offers start up and support to junior investigators wishing to pursue digestive disease research. Finally, the Center has a scientific Enrichment Program that supports lectures and workshops by visiting scientists and promotes interactions and collaborations among the members. The WU-DDRCC includes 49 Full members with overall TDCs of $23.8M. The Research Base includes investigators whose interests span three major areas, specifically (1) Host-microbial interactions/inflammations/mucosal immunity; (2) Stem cell biology/development/epithelial renewal/cancer biology; (3) Nutrient transport/metabolism/ signaling. The research interests of the Full members/Research Base are approximately equally represented among these three broad categories while simultaneously maintaining a strong focus on host-environmental factors in digestive disease. The WU-DDRCC includes four Cores, including an Administrative and Resource Access Core (ARAC), a Biobank Core, a Murine Models Core and an Advanced Imaging and Tissue Analysis Core. In addition, the WU-DDRCC has an active Enrichment Program and a Pilot/Feasibility Program that has supported and nurtured new investigators as they transition to scientific independence.

Public Health Relevance

Research supported through the WU DDRCC has and will continue to have a profound impact on understanding the pathophysiology of digestive disease and the role of host-environment interactions. The WU DDRCC also promotes scientific collaboration and synergies that ultimately will identify new therapeutic opportunities with the potential for rapid translation into clinical trials for patients with digestive diseases.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1)
Program Officer
Perrin, Peter J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Internal Medicine/Medicine
Schools of Medicine
Saint Louis
United States
Zip Code
Zhang, Daoxiang; Li, Lin; Jiang, Hongmei et al. (2017) Constitutive IRAK4 Activation Underlies Poor Prognosis and Chemoresistance in Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 23:1748-1759
Knoop, Kathryn A; Gustafsson, Jenny K; McDonald, Keely G et al. (2017) Antibiotics promote the sampling of luminal antigens and bacteria via colonic goblet cell associated antigen passages. Gut Microbes 8:400-411
Sáenz, José B; Mills, Jason C (2017) Biological techniques: Stomach growth in a dish. Nature 541:160-161
Feng, Jing; Yang, Pu; Mack, Madison R et al. (2017) Sensory TRP channels contribute differentially to skin inflammation and persistent itch. Nat Commun 8:980
Burclaff, Joseph; Osaki, Luciana H; Liu, Dengqun et al. (2017) Targeted Apoptosis of Parietal Cells Is Insufficient to Induce Metaplasia in Stomach. Gastroenterology 152:762-766.e7
Lu, Zhi Hong; Kaliberov, Sergey; Sohn, Rebecca E et al. (2017) A new model of multi-visceral and bone metastatic prostate cancer with perivascular niche targeting by a novel endothelial specific adenoviral vector. Oncotarget 8:12272-12289
Elo, Teresa; Lindfors, Päivi H; Lan, Qiang et al. (2017) Ectodysplasin target gene Fgf20 regulates mammary bud growth and ductal invasion and branching during puberty. Sci Rep 7:5049
Barron, Lauren K; Warner, Barbara B; Tarr, Phillip I et al. (2017) Independence of gut bacterial content and neonatal necrotizing enterocolitis severity. J Pediatr Surg 52:993-998
Radyk, Megan D; Burclaff, Joseph; Willet, Spencer G et al. (2017) Metaplastic Cells in the Stomach Arise, Independently of Stem Cells, via Dedifferentiation or Transdifferentiation of Chief Cells. Gastroenterology :
Oetjen, Landon K; Mack, Madison R; Feng, Jing et al. (2017) Sensory Neurons Co-opt Classical Immune Signaling Pathways to Mediate Chronic Itch. Cell 171:217-228.e13

Showing the most recent 10 out of 830 publications