Cells and Tissue Core The Cells and Tissue Core was established to provide airway cells for use in differentiated airway models and in vitro gene transfer experiments. The use of these models is required for understanding the pathophysiology of CF and for studies of CFTR gene transfer to airway epithelia. Overall Objective: The purpose of this core is to provide centralized access to non-CF and CF tissue and airway cells used for model systems to assess gene transfer to the airway and pathophysiology in CF. The main responsibilities of the Core will be: 1. Acquisition of normal and CF tissue; 2. Generation of in vitro models of human airway epithelia; 3. Electrophysiologic analysis of CF airway epithelia transduced by gene transfer by members of the Center; 4. Generation of in vitro models of mice, ferrets and pig airway epithelia; 5. Research and development on new methods for the culture and study of airway epithelia; 6. Development of airway epithelia cell lines (human, pig and ferret) that grow as epithelia; 7. Creation a repository of airway tissue and primary cell cultures form the CF Lung Tissue Acquisition Program; 8. Development of a cryogenic bank of CF and non-CF lung tissue and RNA; 9. Teaching investigators the methods for developing in vitro model systems; 10. Obtaining approval and record keeping for IRB regulatory committees. A successful Core will provide the models and expertise to the growing community of investigators from different areas, and allow them to focus their unique expertise on the development of CF gene transfer.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK054759-15
Application #
8565020
Study Section
Special Emphasis Panel (ZDK1-GRB-1)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
15
Fiscal Year
2013
Total Cost
$154,605
Indirect Cost
$47,538
Name
University of Iowa
Department
Type
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Hisert, Katherine B; Schoenfelt, Kelly Q; Cooke, Gordon et al. (2016) Ivacaftor-Induced Proteomic Changes Suggest Monocyte Defects May Contribute to the Pathogenesis of Cystic Fibrosis. Am J Respir Cell Mol Biol 54:594-7
Paharik, Alexandra E; Salgado-Pabon, Wilmara; Meyerholz, David K et al. (2016) The Spl Serine Proteases Modulate Staphylococcus aureus Protein Production and Virulence in a Rabbit Model of Pneumonia. mSphere 1:
Guevara, Claudia; Zhang, Chengxian; Gaddy, Jennifer A et al. (2016) Highly differentiated human airway epithelial cells: a model to study host cell-parasite interactions in pertussis. Infect Dis (Lond) 48:177-88
Pohl, John; Morinville, Veronique; Husain, Sohail Z et al. (2016) Toxic-Metabolic Risk Factors Are Uncommon in Pediatric Chronic Pancreatitis. J Pediatr Gastroenterol Nutr 62:e66-7
Yang, Tian; Tal-Gan, Yftah; Paharik, Alexandra E et al. (2016) Structure-Function Analyses of a Staphylococcus epidermidis Autoinducing Peptide Reveals Motifs Critical for AgrC-type Receptor Modulation. ACS Chem Biol 11:1982-91
Mou, Hongmei; Vinarsky, Vladimir; Tata, Purushothama Rao et al. (2016) Dual SMAD Signaling Inhibition Enables Long-Term Expansion of Diverse Epithelial Basal Cells. Cell Stem Cell 19:217-31
Reznikov, Leah R; Meyerholz, David K; Adam, Ryan J et al. (2016) Acid-Sensing Ion Channel 1a Contributes to Airway Hyperreactivity in Mice. PLoS One 11:e0166089
Bartlett, Jennifer A; Ramachandran, Shyam; Wohlford-Lenane, Christine L et al. (2016) Newborn Cystic Fibrosis Pigs Have a Blunted Early Response to an Inflammatory Stimulus. Am J Respir Crit Care Med 194:845-854
Hammond, Emily; Newell Jr, John D; Dilger, Samantha K N et al. (2016) Computed Tomography and Magnetic Resonance Imaging for Longitudinal Characterization of Lung Structure Changes in a Yucatan Miniature Pig Silicosis Model. Toxicol Pathol 44:373-81
Bhatt, Surya P; Bodduluri, Sandeep; Newell, John D et al. (2016) CT-derived Biomechanical Metrics Improve Agreement Between Spirometry and Emphysema. Acad Radiol 23:1255-63

Showing the most recent 10 out of 500 publications