The development of effective gene therapies for inherited disorders requires interdisciplinary programs that focus on the identification of disease genes, an elucidation of disease pathogenesis, and the development of technologies for genetic modulation. The Center's goal has been to provide investigators with the opportunity to improve and/or expand their gene therapy-based research. Although this Center has a primary focus on the development of gene therapies for cystic fibrosis (CF), as evidenced through two of its Research Cores that apply specialized airway model systems to CF research, it also maintains active research programs in molecular medicine for a diverse range of other genetic diseases. The Center has productively fostered gene therapy research through the following mechanisms. 1) The Center's Pilot and Feasibility Program, which has sponsored 50 pilots over the previous 9 years of funding, has brought numerous new Members and expertise into the Center while fostering the development of talented junior Associate Members into independent tenure-track faculty positions. 2) The Center has successfully established and expanded existing specialized Core facilities (Vector Core, Cell and Tissue Core, Cell Morphology and Pathology Core, and Animal Models Core) that are devoted to gene therapy research. These Cores have provided Center investigators with specialized vectors, human and mouse CF model systems, and methods that have allowed them to test hypotheses that could not otherwise be evaluated. The Center has also served as a resource for the distribution of viral vectors and CF models to numerous outside institutions. 3) By combining viral gene-targeting technologies with animal modeling, the Center has also created two new larger CF animal models, in the pig and ferret, to address the growing need for phenotypic models of human CF lung disease. 4) The Center has successfully maintained a CF Lung Tissue Acquisition Consortium of lung transplant centers, which has allowed for significant expansion of the humanized CF model systems. This consortium, which receives between 15-20 CF lung transplants per year, has also promoted numerous intrainstitutional collaborations on CF research that have led to new research programs. 5) The Center has also fostered interdisciplinary interactions and training through its Enrichment Programs, consisting of a centralized center website, a trainee seminar series, an external speaker seminar series, smaller informal research focus groups, and the annual Gene Therapy Center Retreat. 6) The Center has established formal internal and external mechanisms for review of the Center, the Cores, and the Pilot and Feasibility projects, thereby ensuring a high level of excellence and the most appropriate utilization of the Center's resources. In summary, the Center for Gene Therapy of Cystic Fibrosis and Other Genetic Diseases has greatly strengthened existing gene therapy-based research programs at the University of Iowa and consortium institutions, while also serving as a resource for other institutions that perform gene therapy and CF research. These efforts have led to numerous basic and applied research findings that have enhanced the utility of gene therapies to both study and treat genetic diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
3P30DK054759-15S1
Application #
8851182
Study Section
Special Emphasis Panel (ZDK1-GRB-1 (J2))
Program Officer
Eggerman, Thomas L
Project Start
1998-09-30
Project End
2015-03-31
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
15
Fiscal Year
2014
Total Cost
$776,619
Indirect Cost
$262,302
Name
University of Iowa
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Paharik, Alexandra E; Salgado-Pabon, Wilmara; Meyerholz, David K et al. (2016) The Spl Serine Proteases Modulate Staphylococcus aureus Protein Production and Virulence in a Rabbit Model of Pneumonia. mSphere 1:
Hisert, Katherine B; Schoenfelt, Kelly Q; Cooke, Gordon et al. (2016) Ivacaftor-Induced Proteomic Changes Suggest Monocyte Defects May Contribute to the Pathogenesis of Cystic Fibrosis. Am J Respir Cell Mol Biol 54:594-7
Pohl, John; Morinville, Veronique; Husain, Sohail Z et al. (2016) Toxic-Metabolic Risk Factors Are Uncommon in Pediatric Chronic Pancreatitis. J Pediatr Gastroenterol Nutr 62:e66-7
Guevara, Claudia; Zhang, Chengxian; Gaddy, Jennifer A et al. (2016) Highly differentiated human airway epithelial cells: a model to study host cell-parasite interactions in pertussis. Infect Dis (Lond) 48:177-88
Mou, Hongmei; Vinarsky, Vladimir; Tata, Purushothama Rao et al. (2016) Dual SMAD Signaling Inhibition Enables Long-Term Expansion of Diverse Epithelial Basal Cells. Cell Stem Cell 19:217-31
Yang, Tian; Tal-Gan, Yftah; Paharik, Alexandra E et al. (2016) Structure-Function Analyses of a Staphylococcus epidermidis Autoinducing Peptide Reveals Motifs Critical for AgrC-type Receptor Modulation. ACS Chem Biol 11:1982-91
Bartlett, Jennifer A; Ramachandran, Shyam; Wohlford-Lenane, Christine L et al. (2016) Newborn Cystic Fibrosis Pigs Have a Blunted Early Response to an Inflammatory Stimulus. Am J Respir Crit Care Med 194:845-854
Reznikov, Leah R; Meyerholz, David K; Adam, Ryan J et al. (2016) Acid-Sensing Ion Channel 1a Contributes to Airway Hyperreactivity in Mice. PLoS One 11:e0166089
Bhatt, Surya P; Bodduluri, Sandeep; Newell, John D et al. (2016) CT-derived Biomechanical Metrics Improve Agreement Between Spirometry and Emphysema. Acad Radiol 23:1255-63
Hammond, Emily; Newell Jr, John D; Dilger, Samantha K N et al. (2016) Computed Tomography and Magnetic Resonance Imaging for Longitudinal Characterization of Lung Structure Changes in a Yucatan Miniature Pig Silicosis Model. Toxicol Pathol 44:373-81

Showing the most recent 10 out of 500 publications