The Cellular and Molecular Morphology Core provides expertise and specialized laboratory facilities to Gl researchers and develops new tests for clinical and basic research. This Core has been highly productive and beneficial for members of the TMC Digestive Diseases Center, particularly to Pilot and Feasibility (P/F) awardees, whose experience and resources are necessarily limited. In the last 4 years, 22 of the 50 Full Members used this Core as did 16 of 79 Associate members and P/F Awardees. Major services include histology, immunohistochemistry, in-situ hybridization, enzyme histochemistry and immunofluorescent antibody studies, confocal and deconvolution microscopy, transmission, scanning, and immunoelectron microscopy, quantitative morphometric analysis, laser capture dissection for molecular genetic analyses, and digital images for internet communication and publication. The Core provides consultation and training in collection and processing of human and animal tissues, as well as technical advice to researchers interested in developing sophisticated procedures. A major benefit of this Core is the sharing of information gained from diverse projects in individual laboratories to enhance the productivity of all. This is accomplished by workshops and meetings of the user groups at which new data, methods and procedures are presented. Advances during the past 4 years include: upgrading of the Laser Capture Microscopy system for phase and fluorescence microscopy;adding 40 new antibodies, some with double staining to meet investigators'needs;and the introduction of Optical Projection Tomography for 3-dimensional imaging of intestinal development and injury of intestinal organoids. High throughput imaging-based Monoclonal Antibody Screening was added in response to DDC members requests. This will be an efficient way to generate quality antibodies to purified proteins and antibody panels following 'shotgun immunizations'of multiple proteins (or cell fractions) which are then used in subsequent reverse proteomics approaches. Short DIG-labeled locked nucleic acid (LNA) probes have been introduced by the In-Situ Core. Since they are much shorter than conventional riboprobes (only 20-22 nucleotides long), LNA probes are applicable to micro RNAs and also detect the cellular localization of specific splice variants of RNA. Plans include standardization of a protocol to detect multiple genes at a time using riboprobes labeled with different tags and to combine RNA in situ hybridization and immunohistochemistry. This will be tested With fluorescent probes to permit confocal microscopy for exquisite cellular localization.

Public Health Relevance

The Cellular and Molecular Morphology Core provides expertise and specialized laboratory facilities for researchers for histology, immunohistochemistry, microscopy and in-situ hybridization to understand the pathology and molecular basis of Gl disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK056338-12
Application #
8611913
Study Section
Special Emphasis Panel (ZDK1-GRB-8)
Project Start
Project End
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
12
Fiscal Year
2014
Total Cost
$219,100
Indirect Cost
$79,100
Name
Baylor College of Medicine
Department
Type
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Zhong, Xiaoying S; Winston, John H; Luo, Xiuju et al. (2018) Neonatal Colonic Inflammation Epigenetically Aggravates Epithelial Inflammatory Responses to Injury in Adult Life. Cell Mol Gastroenterol Hepatol 6:65-78
Richards, JoAnne S; Ren, Yi A; Candelaria, Nicholes et al. (2018) Ovarian Follicular Theca Cell Recruitment, Differentiation, and Impact on Fertility: 2017 Update. Endocr Rev 39:1-20
De Maio, Antonia; Yalamanchili, Hari Krishna; Adamski, Carolyn J et al. (2018) RBM17 Interacts with U2SURP and CHERP to Regulate Expression and Splicing of RNA-Processing Proteins. Cell Rep 25:726-736.e7
Kim, Myunghoo; Galan, Carolina; Hill, Andrea A et al. (2018) Critical Role for the Microbiota in CX3CR1+ Intestinal Mononuclear Phagocyte Regulation of Intestinal T Cell Responses. Immunity 49:151-163.e5
Zou, Winnie Y; Blutt, Sarah E; Zeng, Xi-Lei et al. (2018) Epithelial WNT Ligands Are Essential Drivers of Intestinal Stem Cell Activation. Cell Rep 22:1003-1015
Cardona, Sandra M; Kim, Sangwon V; Church, Kaira A et al. (2018) Role of the Fractalkine Receptor in CNS Autoimmune Inflammation: New Approach Utilizing a Mouse Model Expressing the Human CX3CR1I249/M280 Variant. Front Cell Neurosci 12:365
Spychala, Monica S; Venna, Venugopal Reddy; Jandzinski, Michal et al. (2018) Age-related changes in the gut microbiota influence systemic inflammation and stroke outcome. Ann Neurol 84:23-36
Piyarathna, Danthasinghe Waduge Badrajee; Rajendiran, Thekkelnaycke M; Putluri, Vasanta et al. (2018) Distinct Lipidomic Landscapes Associated with Clinical Stages of Urothelial Cancer of the Bladder. Eur Urol Focus 4:907-915
Choi, Byung-Kwon; Dayaram, Tajhal; Parikh, Neha et al. (2018) Literature-based automated discovery of tumor suppressor p53 phosphorylation and inhibition by NEK2. Proc Natl Acad Sci U S A 115:10666-10671
Gates, Leah A; Gu, Guowei; Chen, Yue et al. (2018) Proteomic profiling identifies key coactivators utilized by mutant ER? proteins as potential new therapeutic targets. Oncogene 37:4581-4598

Showing the most recent 10 out of 1121 publications