Adipose tissue function is central to overall metabolism. In addition to its energy storage role, adipose tissue secretes bioactive factors (i.e. adipokines) that contribute to regulating food intake, energy expenditure and normal functioning of key organs such as the vasculature, muscle and liver. Excessive expansion of adipose tissue, as occurs in obesity, is associated with cardiovascular abnormalities and systemic inflammation which ultimately may promote development of cardiovascular disease, diabetes and cancer. Adipose tissue expansion involves processes that include adipocyte hypertrophy, adipogenesis (pre-adipocyte differentiation), angiogenesis (new blood vessel formation) and extracellular matrix remodeling. There is growing interest in targeting these processes as a potentially efficient way to limit adipose tissue mass and obesity. In addition, understanding the molecular mechanisms that mediate lipid storage and the nutritional effects on adipose tissue metabolism are important in the pathophysiology of obesity. The Adipocyte Biology and Molecular Nutrition (ABMN) Core was established in 2006 and has since played a central role in facilitating molecular research related to nutrition and obesity by NORC investigators. The core provides NORC researchers, especially young investigators, access to specific equipment and expertise that are difficult to assemble by individual investigators and that can present a barrier to those new to this field. The state-of-the-art research infrastructure and training available through the ABMN Core facilitate and enhance nutrition/obesity related research and maximize resource use for NORC investigators, particularly young investigators who are establishing independent research programs. The core helps clinical investigators who are interested in the mechanisms underlying the pathophysiology associated with obesity in conducting molecular studies of biopsy samples obtained from metabolically phenotyped subjects. The ABMN core also creates opportunities for interactions and collaborations that often lead to initiation of new multidiscipiinary projects and help recruit basic and clinical investigators to nutrition/obesity related research (see publication record).

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK056341-14
Application #
8640151
Study Section
Special Emphasis Panel (ZDK1-GRB-2)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
14
Fiscal Year
2014
Total Cost
$106,669
Indirect Cost
$36,492
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Riek, Amy E; Oh, Jisu; Darwech, Isra et al. (2018) Vitamin D3 supplementation decreases a unique circulating monocyte cholesterol pool in patients with type 2 diabetes. J Steroid Biochem Mol Biol 177:187-192
Bittel, Adam J; Bohnert, Kathryn L; Reeds, Dominic N et al. (2018) Reduced Muscle Strength in Barth Syndrome May Be Improved by Resistance Exercise Training: A Pilot Study. JIMD Rep :
Shepherd, Andrew J; Copits, Bryan A; Mickle, Aaron D et al. (2018) Angiotensin II Triggers Peripheral Macrophage-to-Sensory Neuron Redox Crosstalk to Elicit Pain. J Neurosci 38:7032-7057
Cifarelli, Vincenza; Abumrad, Nada A (2018) Intestinal CD36 and Other Key Proteins of Lipid Utilization: Role in Absorption and Gut Homeostasis. Compr Physiol 8:493-507
Smith, Gordon I; Commean, Paul K; Reeds, Dominic N et al. (2018) Effect of Protein Supplementation During Diet-Induced Weight Loss on Muscle Mass and Strength: A Randomized Controlled Study. Obesity (Silver Spring) 26:854-861
Perry, Justin S A; Russler-Germain, Emilie V; Zhou, You W et al. (2018) Transfer of Cell-Surface Antigens by Scavenger Receptor CD36 Promotes Thymic Regulatory T Cell Receptor Repertoire Development and Allo-tolerance. Immunity 48:1271
Turecamo, S E; Walji, T A; Broekelmann, T J et al. (2018) Contribution of metabolic disease to bone fragility in MAGP1-deficient mice. Matrix Biol 67:1-14
Samovski, Dmitri; Dhule, Pallavi; Pietka, Terri et al. (2018) Regulation of Insulin Receptor Pathway and Glucose Metabolism by CD36 Signaling. Diabetes 67:1272-1284
Porter, Lane C; Franczyk, Michael P; Pietka, Terri et al. (2018) NAD+-dependent deacetylase SIRT3 in adipocytes is dispensable for maintaining normal adipose tissue mitochondrial function and whole body metabolism. Am J Physiol Endocrinol Metab 315:E520-E530
Acevedo, María Belén; Eagon, J Christopher; Bartholow, Bruce D et al. (2018) Sleeve gastrectomy surgery: when 2 alcoholic drinks are converted to 4. Surg Obes Relat Dis 14:277-283

Showing the most recent 10 out of 1334 publications