This NIDDK-sponsored Core Center of Excellence in Hematology (CCEH) provides cost effective, quality assured resources and expertise that enable individual investigators to isolate stem / progenitor cells, mark them, alter their gene expression, and accurately detect and quantitate their progeny in vitro and in vivo. The original application funded in 1999, contained 5 cores which have to date served 90+ investigators, in 18 States and 4 countries. These resources have continuously evolved to adapt new functions that anticipate and meet the needs of the research base, as shown by the addition of a new core. Therefore the current application proposes 6 cores. Core A, the Administrative Core, directed by Dr Beverly Torok-Storb provides scientific and budgetary oversight for all core activities. Core B, now a National Core for Large-Scale Cell Processing directed by Dr Shelly Heimfeld, adapts and/or develops technologies to optimally harvest, isolate, cryopreserve and analyze defined populations of human, canine, and non-human primate cells harvested from blood and marrow. Core C, Clonal Analysis directed by Dr Mike Harkey, provides reagents and methods for tracking stem cell progeny. Core D, Vector Production directed by Dr Hans Peter Kiem, provides existing and develops improved viral vectors and vector production technologies for gene transfer into cells. Core E, Xenograft Models, under the direction of Dr Irv Bernstein provides xenografting for in vivo functional analysis of stem/progenitor cell populations. Core F, the developing Canine Cell and Molecular Resources Core, directed by Dr Patrick Paddison, is a new core that serves to enhance the value of the canine large animal model for preclinical in vivo testing of cells and reagents, with particular emphasis given to developing canine specific RNA interference technologies. Finally, Core A is also responsible for oversight of a charge-back system to generate program income. This program income is used to enhance the cores but also to fund the Pilot &Feasibility (P&F) Studies Program and the Enrichment Program. During the past five years 30 P&F grants were awarded and 27 speakers were sponsored. Both programs significantly impact the 40 member research base by stimulating and supporting new research directions and facilitating new collaborations. The NIH-sponsored Hematology-related support of the research base exceeds $25 million in direct costs annually. This represents more than 80% of all grants awarded to the research base.

Public Health Relevance

Procuring adequate numbers of hematopoietic stem cells for research and applying the latest technologies to this research are often outside the financial reach and expertise of individual investigators. The NIDDK-sponsored Core Centers provide a mechanism whereby collaborative groups of investigators share resources to reduce costs while providing high quality state-of-the-art technologies and speeding progress.

National Institute of Health (NIH)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1)
Program Officer
Bishop, Terry Rogers
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Fred Hutchinson Cancer Research Center
United States
Zip Code
Busch, S E; Moser, R D; Gurley, K E et al. (2014) ARF inhibits the growth and malignant progression of non-small-cell lung carcinoma. Oncogene 33:2665-73
Watts, Korashon L; Beard, Brian C; Wood, Brent L et al. (2014) No evidence of clonal dominance after transplant of HOXB4-expanded cord blood cells in a nonhuman primate model. Exp Hematol 42:497-504
Klippel, Z K; Chou, J; Towlerton, A M et al. (2014) Immune escape from NY-ESO-1-specific T-cell therapy via loss of heterozygosity in the MHC. Gene Ther 21:337-42
Wurm, Melanie; Kowalski, John; Heckl, Dirk et al. (2014) Ectopic expression of HOXC6 blocks myeloid differentiation and predisposes to malignant transformation. Exp Hematol 42:114-25.e4
Adair, Jennifer E; Johnston, Sandra K; Mrugala, Maciej M et al. (2014) Gene therapy enhances chemotherapy tolerance and efficacy in glioblastoma patients. J Clin Invest 124:4082-92
Iwata, Mineo; Sandstrom, Richard S; Delrow, Jeffrey J et al. (2014) Functionally and phenotypically distinct subpopulations of marrow stromal cells are fibroblast in origin and induce different fates in peripheral blood monocytes. Stem Cells Dev 23:729-40
Green, Damian J; Orgun, Nural N; Jones, Jon C et al. (2014) A preclinical model of CD38-pretargeted radioimmunotherapy for plasma cell malignancies. Cancer Res 74:1179-89
Burtner, Christopher R; Beard, Brian C; Kennedy, Douglas R et al. (2014) Intravenous injection of a foamy virus vector to correct canine SCID-X1. Blood 123:3578-84
Bleakley, Marie; Heimfeld, Shelly; Jones, Lori A et al. (2014) Engineering human peripheral blood stem cell grafts that are depleted of naïve T cells and retain functional pathogen-specific memory T cells. Biol Blood Marrow Transplant 20:705-16
Shu, Z; Heimfeld, S; Gao, D (2014) Hematopoietic SCT with cryopreserved grafts: adverse reactions after transplantation and cryoprotectant removal before infusion. Bone Marrow Transplant 49:469-76

Showing the most recent 10 out of 175 publications