The GI Surgical Modeling Core provides unique murine surgical services (bariatric and other novel surgical procedures). This core was established to enhance the investigative efforts of the VDDRC investigators and provide avenues of research that otherwise would not be feasible. The primary rational for the core rests in the growing number of mice having genetic alterations with relevance or potential relevance to digestive diseases and the need for surgical and experimental techniques that are necessary to study the impact of genetic (or pharmacologic) manipulations. The procedures require skill and practice in order to study healthy, unstressed mice. The core has skilled surgeons that are capable of adapting a range of procedures to suit specific needs of VDDRC members including bariatric surgical procedures, surgical models for Barrett's esophagus and liver transplantation and ischemia/reperfusion injury models. The quality of the results that are obtained using surgical models is directly related to the general health of the animal. The Core has placed significant emphasis on providing murine models that are free of avoidable, undesired complications. Pre and post-operative care is as important to the success of the procedure as the surgical procedure itself. The overall goal of the core is to provide murine models of bariatric surgery using procedures that are designed to reflect those performed in humans, liver transplantation, and unique customized surgical models adapted to the needs of VDDRC members. To achieve this goal the core: 1. Provides mouse bariatric surgery models with application to basic and translational research. 2. Provides mouse models of Barrett's esophagus and liver and small bowel transplantation. 3. Provides peri-operative care to ensure that animals are healthy and free of undue stress. 4. Trains investigators in specialized surgical procedures. 5. Responds to the needs of VDDRC investigators through development of new procedures. The Core interacts closely with other VDDRC Cores, the Mouse Metabolic Phenotyping Center (MMPC), the Diabetes Research and Training Center, and the Division of Animal Care to ensure and maximize efficient use of resources and personnel and enhance interdisciplinary collaboration.

Public Health Relevance

This core is relevant to the mission of the VDDRC as it will provide novel mouse surgical models that replicate procedures that affect gastrointestinal function in humans. These surgical models, when coupled with genetically altered mice, will be a powerful resource for establishing mechanisms of gastrointestinal function.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK058404-12
Application #
8450725
Study Section
Special Emphasis Panel (ZDK1-GRB-8)
Project Start
Project End
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
12
Fiscal Year
2013
Total Cost
$10,121
Indirect Cost
$3,633
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Engevik, Amy C; Kaji, Izumi; Engevik, Melinda A et al. (2018) Loss of MYO5B Leads to Reductions in Na+ Absorption With Maintenance of CFTR-Dependent Cl- Secretion in Enterocytes. Gastroenterology 155:1883-1897.e10
Tafreshi, Mona; Guan, Jyeswei; Gorrell, Rebecca J et al. (2018) Helicobacter pylori Type IV Secretion System and Its Adhesin Subunit, CagL, Mediate Potent Inflammatory Responses in Primary Human Endothelial Cells. Front Cell Infect Microbiol 8:22
Rogers, Meredith C; Lamens, Kristina D; Shafagati, Nazly et al. (2018) CD4+ Regulatory T Cells Exert Differential Functions during Early and Late Stages of the Immune Response to Respiratory Viruses. J Immunol 201:1253-1266
Lowry, Mary Allyson; Vaezi, Michael F; Correa, Hernan et al. (2018) Mucosal Impedance Measurements Differentiate Pediatric Patients With Active Versus Inactive Eosinophilic Esophagitis. J Pediatr Gastroenterol Nutr 67:198-203
Pollins, Alonda C; Boyer, Richard B; Nussenbaum, Marlieke et al. (2018) Comparing Processed Nerve Allografts and Assessing Their Capacity to Retain and Release Nerve Growth Factor. Ann Plast Surg 81:198-202
Hebron, Katie E; Li, Elizabeth Y; Arnold Egloff, Shanna A et al. (2018) Alternative splicing of ALCAM enables tunable regulation of cell-cell adhesion through differential proteolysis. Sci Rep 8:3208
Scoville, Elizabeth A; Allaman, Margaret M; Brown, Caroline T et al. (2018) Alterations in Lipid, Amino Acid, and Energy Metabolism Distinguish Crohn's Disease from Ulcerative Colitis and Control Subjects by Serum Metabolomic Profiling. Metabolomics 14:
Ruiz, Rachel M; Sommer, Evan C; Tracy, Dustin et al. (2018) Novel patterns of physical activity in a large sample of preschool-aged children. BMC Public Health 18:242
Bolus, W Reid; Peterson, Kristin R; Hubler, Merla J et al. (2018) Elevating adipose eosinophils in obese mice to physiologically normal levels does not rescue metabolic impairments. Mol Metab 8:86-95
Loh, John T; Beckett, Amber C; Scholz, Matthew B et al. (2018) High-Salt Conditions Alter Transcription of Helicobacter pylori Genes Encoding Outer Membrane Proteins. Infect Immun 86:

Showing the most recent 10 out of 1365 publications