The main objectives of the Preclinical Models of Digestive Diseases Core are to provide VDDRC investigators with access to non-invasive small animal imaging, novel conditionally immortalized murine gastrointestinal epithelial cell lines, state-of-the art research immunohistochemistry, and consultative services in interpretation of morphologic findings in animal models and human digestive diseases. The core has three components: the Preclinical Imaging Subcore, the Novel Cell Line Development Subcore and the Tissue Morphology Subcore. The expansion and modification of this Core now provides VDDRC investigators the opportunity to move nimbly from investigations utilizing non-invasive molecular imaging (Preclinical Imaging Subcore) and histology (Tissue Morphology Subcore), often in tandem, in tractable transgenic model systems of digestive diseases (Novel Ceil Lines Subcore) to mechanistic studies using novel cell culture-based systems. In vitro studies that employ conditionally immortalized transgenic cell lines will subsequently inform and guide new in vivo experimentation which will ultimately culminate in studies of clinical populations. New services will include access to a variety of molecular imaging probes specifically tailored for imaging GI disease in preclinical animal models, including NIR-based optical imaging reagents and translational imaging compounds labeled with positron emitting isotopes (PET). The Preclinical imaging Subcore will support all major small animal imaging modalities including optical, SPECT, and PET methods for molecular imaging, as provided by the Center for Small Animal Imaging within the Vanderbilt University institute of Imaging Science. The Novel Cell Line Development Subcore provides a unique service in developing conditionally immortalized epithelial cell lines from the different segments of the gastrointestinal tract of transgenic mice with gene deletions known to be associated with known gastrointestinal pathologies. This subcore addresses the lack of normal epithelial cell lines derived from intestinal mucosa by utilizing a novel transgenic mouse, the """"""""Immortomouse,"""""""" which carries a temperature-sensitive mutant of the SV40 large T gene, an immortalizing gene active only at the permissive temperature. The Tissue Morphology Subcore provides research immunohistochemistry services for both human and animal intestinal tissue. In addition, Dr. Washington, the core Director, provides the necessary expertise for interpretation of the histologic findings obtained in these studies.

Public Health Relevance

This core provides techniques and tools applicable to the study of many different digestive diseases. These services include special cell lines custom-tailored to the relevant disease, small animal radiology, and expert examination of tissue samples by a pathologist specializing in digestive diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK058404-12
Application #
8450726
Study Section
Special Emphasis Panel (ZDK1-GRB-8)
Project Start
Project End
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
12
Fiscal Year
2013
Total Cost
$354,081
Indirect Cost
$127,106
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Engevik, Amy C; Kaji, Izumi; Engevik, Melinda A et al. (2018) Loss of MYO5B Leads to Reductions in Na+ Absorption With Maintenance of CFTR-Dependent Cl- Secretion in Enterocytes. Gastroenterology 155:1883-1897.e10
Tafreshi, Mona; Guan, Jyeswei; Gorrell, Rebecca J et al. (2018) Helicobacter pylori Type IV Secretion System and Its Adhesin Subunit, CagL, Mediate Potent Inflammatory Responses in Primary Human Endothelial Cells. Front Cell Infect Microbiol 8:22
Rogers, Meredith C; Lamens, Kristina D; Shafagati, Nazly et al. (2018) CD4+ Regulatory T Cells Exert Differential Functions during Early and Late Stages of the Immune Response to Respiratory Viruses. J Immunol 201:1253-1266
Lowry, Mary Allyson; Vaezi, Michael F; Correa, Hernan et al. (2018) Mucosal Impedance Measurements Differentiate Pediatric Patients With Active Versus Inactive Eosinophilic Esophagitis. J Pediatr Gastroenterol Nutr 67:198-203
Pollins, Alonda C; Boyer, Richard B; Nussenbaum, Marlieke et al. (2018) Comparing Processed Nerve Allografts and Assessing Their Capacity to Retain and Release Nerve Growth Factor. Ann Plast Surg 81:198-202
Hebron, Katie E; Li, Elizabeth Y; Arnold Egloff, Shanna A et al. (2018) Alternative splicing of ALCAM enables tunable regulation of cell-cell adhesion through differential proteolysis. Sci Rep 8:3208
Scoville, Elizabeth A; Allaman, Margaret M; Brown, Caroline T et al. (2018) Alterations in Lipid, Amino Acid, and Energy Metabolism Distinguish Crohn's Disease from Ulcerative Colitis and Control Subjects by Serum Metabolomic Profiling. Metabolomics 14:
Ruiz, Rachel M; Sommer, Evan C; Tracy, Dustin et al. (2018) Novel patterns of physical activity in a large sample of preschool-aged children. BMC Public Health 18:242
Bolus, W Reid; Peterson, Kristin R; Hubler, Merla J et al. (2018) Elevating adipose eosinophils in obese mice to physiologically normal levels does not rescue metabolic impairments. Mol Metab 8:86-95
Loh, John T; Beckett, Amber C; Scholz, Matthew B et al. (2018) High-Salt Conditions Alter Transcription of Helicobacter pylori Genes Encoding Outer Membrane Proteins. Infect Immun 86:

Showing the most recent 10 out of 1365 publications