The Bioanalytical/Mass Spectrometry/Proteomic Core (""""""""MS/Proteomics Core"""""""") provides cost-effective, state of-the-art instrumentation and expertise to investigators in the Vanderbilt Digestive Disease Research Center (VDDRC). This core is among the specialized service cores utilizing the technical personnel and instrument facilities located in the Vanderbilt Mass Spectrometry Research Center (MSRC). This core will be used for identification and quantitation of small molecule metabolites and identification and characterization of proteins. Forty six (46) VDDRC investigators have used the core extensively during the previous five years for digestive disease related projects, such as assistance in developing analytical methods or experimental design, performing analysis of complex protein samples. The core develops standard operating procedures, and maintains quality control (QC) records on particular assays, instrument performance, and maintenance history. Core personnel perform assays for investigators and train students and fellows in the theoretical and practical aspects of MS. The MS Core component is run as an open-access facility in which users generally prepare their samples and operate the instruments if they so desire. Proteomics samples are submitted to the core for analysis by proteomics staff after consultations between the investigator and core staff have determined the most appropriate class of analytical service. Personnel handle all aspects of sample processing, analysis, and data reporting of samples submitted for proteomics analysis. Administrative staff monitors the use of the instrument facilities by investigators and prepare reports on utilization for use by the Administrative Core. The MSRC cores have 18 mass spectrometers available to users, in addition to specialized facilities for 2D-differential gel electrophoresis and gel imaging.
The Specific Aims of the Core are to: 1) provide high-quality GC/MS, tandem LC/MS, and MALDI/TOF mass spectrometry services for analysis of small molecule metabolites;2) provide proteomics services for identification and characterization of individual proteins and more complex tissue-specific proteomes;(3) provide analytical expertise in mass spectrometry for assay development and validation;4) assist users with data analysis;and 5) provide advanced training in biomedical mass spectrometry and proteomics to students and fellows. The goal of the Core is to enhance investigator abilities to prevent, diagnose or treat human digestive disease-related disorders.

Public Health Relevance

Mass spectrometry is a powerful technique for detection, identification and quantitation of biomolecules that are characteristic of digestive disease processes. The MS/Proteomics Core provides a wide range of advanced analytical instrumentation and technical expertise for research investigators who are members of the Vanderbilt Digestive Disease Research Center.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-8)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
United States
Zip Code
Engevik, Amy C; Kaji, Izumi; Engevik, Melinda A et al. (2018) Loss of MYO5B Leads to Reductions in Na+ Absorption With Maintenance of CFTR-Dependent Cl- Secretion in Enterocytes. Gastroenterology 155:1883-1897.e10
Tafreshi, Mona; Guan, Jyeswei; Gorrell, Rebecca J et al. (2018) Helicobacter pylori Type IV Secretion System and Its Adhesin Subunit, CagL, Mediate Potent Inflammatory Responses in Primary Human Endothelial Cells. Front Cell Infect Microbiol 8:22
Rogers, Meredith C; Lamens, Kristina D; Shafagati, Nazly et al. (2018) CD4+ Regulatory T Cells Exert Differential Functions during Early and Late Stages of the Immune Response to Respiratory Viruses. J Immunol 201:1253-1266
Lowry, Mary Allyson; Vaezi, Michael F; Correa, Hernan et al. (2018) Mucosal Impedance Measurements Differentiate Pediatric Patients With Active Versus Inactive Eosinophilic Esophagitis. J Pediatr Gastroenterol Nutr 67:198-203
Pollins, Alonda C; Boyer, Richard B; Nussenbaum, Marlieke et al. (2018) Comparing Processed Nerve Allografts and Assessing Their Capacity to Retain and Release Nerve Growth Factor. Ann Plast Surg 81:198-202
Hebron, Katie E; Li, Elizabeth Y; Arnold Egloff, Shanna A et al. (2018) Alternative splicing of ALCAM enables tunable regulation of cell-cell adhesion through differential proteolysis. Sci Rep 8:3208
Scoville, Elizabeth A; Allaman, Margaret M; Brown, Caroline T et al. (2018) Alterations in Lipid, Amino Acid, and Energy Metabolism Distinguish Crohn's Disease from Ulcerative Colitis and Control Subjects by Serum Metabolomic Profiling. Metabolomics 14:
Ruiz, Rachel M; Sommer, Evan C; Tracy, Dustin et al. (2018) Novel patterns of physical activity in a large sample of preschool-aged children. BMC Public Health 18:242
Bolus, W Reid; Peterson, Kristin R; Hubler, Merla J et al. (2018) Elevating adipose eosinophils in obese mice to physiologically normal levels does not rescue metabolic impairments. Mol Metab 8:86-95
Loh, John T; Beckett, Amber C; Scholz, Matthew B et al. (2018) High-Salt Conditions Alter Transcription of Helicobacter pylori Genes Encoding Outer Membrane Proteins. Infect Immun 86:

Showing the most recent 10 out of 1365 publications