The Bioanalytical/Mass Spectrometry/Proteomic Core (""""""""MS/Proteomics Core"""""""") provides cost-effective, state of-the-art instrumentation and expertise to investigators in the Vanderbilt Digestive Disease Research Center (VDDRC). This core is among the specialized service cores utilizing the technical personnel and instrument facilities located in the Vanderbilt Mass Spectrometry Research Center (MSRC). This core will be used for identification and quantitation of small molecule metabolites and identification and characterization of proteins. Forty six (46) VDDRC investigators have used the core extensively during the previous five years for digestive disease related projects, such as assistance in developing analytical methods or experimental design, performing analysis of complex protein samples. The core develops standard operating procedures, and maintains quality control (QC) records on particular assays, instrument performance, and maintenance history. Core personnel perform assays for investigators and train students and fellows in the theoretical and practical aspects of MS. The MS Core component is run as an open-access facility in which users generally prepare their samples and operate the instruments if they so desire. Proteomics samples are submitted to the core for analysis by proteomics staff after consultations between the investigator and core staff have determined the most appropriate class of analytical service. Personnel handle all aspects of sample processing, analysis, and data reporting of samples submitted for proteomics analysis. Administrative staff monitors the use of the instrument facilities by investigators and prepare reports on utilization for use by the Administrative Core. The MSRC cores have 18 mass spectrometers available to users, in addition to specialized facilities for 2D-differential gel electrophoresis and gel imaging.
The Specific Aims of the Core are to: 1) provide high-quality GC/MS, tandem LC/MS, and MALDI/TOF mass spectrometry services for analysis of small molecule metabolites;2) provide proteomics services for identification and characterization of individual proteins and more complex tissue-specific proteomes;(3) provide analytical expertise in mass spectrometry for assay development and validation;4) assist users with data analysis;and 5) provide advanced training in biomedical mass spectrometry and proteomics to students and fellows. The goal of the Core is to enhance investigator abilities to prevent, diagnose or treat human digestive disease-related disorders.

Public Health Relevance

Mass spectrometry is a powerful technique for detection, identification and quantitation of biomolecules that are characteristic of digestive disease processes. The MS/Proteomics Core provides a wide range of advanced analytical instrumentation and technical expertise for research investigators who are members of the Vanderbilt Digestive Disease Research Center.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK058404-12
Application #
8450721
Study Section
Special Emphasis Panel (ZDK1-GRB-8)
Project Start
Project End
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
12
Fiscal Year
2013
Total Cost
$77,757
Indirect Cost
$27,913
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Corley, Douglas A; Peek Jr, Richard M (2018) When Should Guidelines Change? A Clarion Call for Evidence Regarding the Benefits and Risks of Screening for Colorectal Cancer at Earlier Ages. Gastroenterology 155:947-949
Koethe, John R; McDonnell, Wyatt; Kennedy, Arion et al. (2018) Adipose Tissue is Enriched for Activated and Late-Differentiated CD8+ T Cells and Shows Distinct CD8+ Receptor Usage, Compared With Blood in HIV-Infected Persons. J Acquir Immune Defic Syndr 77:e14-e21
Yang, Qing; Yasuda, Tomohiko; Choi, Eunyoung et al. (2018) MEK Inhibitor Reverses Metaplasia and Allows Re-Emergence of Normal Lineages in Helicobacter pylori-Infected Gerbils. Gastroenterology :
Alvarado, Gabriela; Ettayebi, Khalil; Atmar, Robert L et al. (2018) Human Monoclonal Antibodies That Neutralize Pandemic GII.4 Noroviruses. Gastroenterology 155:1898-1907
Dutter, Brendan F; Ender, Anna; Sulikowski, Gary A et al. (2018) Rhodol-based thallium sensors for cellular imaging of potassium channel activity. Org Biomol Chem 16:5575-5579
Salisbury-Ruf, Christi T; Bertram, Clinton C; Vergeade, Aurelia et al. (2018) Bid maintains mitochondrial cristae structure and function and protects against cardiac disease in an integrative genomics study. Elife 7:
Kovtun, Oleg; Tomlinson, Ian D; Bailey, Danielle M et al. (2018) Single Quantum Dot Tracking Illuminates Neuroscience at the Nanoscale. Chem Phys Lett 706:741-752
Herrick, Mary K; Favela, Kristin M; Simerly, Richard B et al. (2018) Attenuation of diet-induced hypothalamic inflammation following bariatric surgery in female mice. Mol Med 24:56
Greenplate, Allison; Wang, Kai; Tripathi, Rati M et al. (2018) Genomic Profiling of T-Cell Neoplasms Reveals Frequent JAK1 and JAK3 Mutations With Clonal Evasion From Targeted Therapies. JCO Precis Oncol 2018:
Dubé, Philip E; Liu, Cambrian Y; Girish, Nandini et al. (2018) Pharmacological activation of epidermal growth factor receptor signaling inhibits colitis-associated cancer in mice. Sci Rep 8:9119

Showing the most recent 10 out of 1365 publications