The GI Surgical Modeling Core provides unique murine surgical services (bariatric and other novel surgical procedures). This core was established to enhance the investigative efforts of the VDDRC investigators and provide avenues of research that otherwise would not be feasible. The primary rational for the core rests in the growing number of mice having genetic alterations with relevance or potential relevance to digestive diseases and the need for surgical and experimental techniques that are necessary to study the impact of genetic (or pharmacologic) manipulations. The procedures require skill and practice in order to study healthy, unstressed mice. The core has skilled surgeons that are capable of adapting a range of procedures to suit specific needs of VDDRC members including bariatric surgical procedures, surgical models for Barrett's esophagus and liver transplantation and ischemia/reperfusion injury models. The quality of the results that are obtained using surgical models is directly related to the general health of the animal. The Core has placed significant emphasis on providing murine models that are free of avoidable, undesired complications. Pre and post-operative care is as important to the success of the procedure as the surgical procedure itself. The overall goal of the core is to provide murine models of bariatric surgery using procedures that are designed to reflect those performed in humans, liver transplantation, and unique customized surgical models adapted to the needs of VDDRC members. To achieve this goal the core: 1. Provides mouse bariatric surgery models with application to basic and translational research. 2. Provides mouse models of Barrett's esophagus and liver and small bowel transplantation. 3. Provides peri-operative care to ensure that animals are healthy and free of undue stress. 4. Trains investigators in specialized surgical procedures. 5. Responds to the needs of VDDRC investigators through development of new procedures. The Core interacts closely with other VDDRC Cores, the Mouse Metabolic Phenotyping Center (MMPC), the Diabetes Research and Training Center, and the Division of Animal Care to ensure and maximize efficient use of resources and personnel and enhance interdisciplinary collaboration.

Public Health Relevance

This core is relevant to the mission of the VDDRC as it will provide novel mouse surgical models that replicate procedures that affect gastrointestinal function in humans. These surgical models, when coupled with genetically altered mice, will be a powerful resource for establishing mechanisms of gastrointestinal function.

National Institute of Health (NIH)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
United States
Zip Code
Chaturvedi, R; de Sablet, T; Asim, M et al. (2015) Increased Helicobacter pylori-associated gastric cancer risk in the Andean region of Colombia is mediated by spermine oxidase. Oncogene 34:3429-40
Krakowiak, M S; Noto, J M; Piazuelo, M B et al. (2015) Matrix metalloproteinase 7 restrains Helicobacter pylori-induced gastric inflammation and premalignant lesions in the stomach by altering macrophage polarization. Oncogene 34:1865-71
Wei, Jinxiong; Noto, Jennifer M; Zaika, Elena et al. (2015) Bacterial CagA protein induces degradation of p53 protein in a p14ARF-dependent manner. Gut 64:1040-8
Wroblewski, Lydia E; Piazuelo, M Blanca; Chaturvedi, Rupesh et al. (2015) Helicobacter pylori targets cancer-associated apical-junctional constituents in gastroids and gastric epithelial cells. Gut 64:720-30
Otero, Yolanda F; Lundblad, Tammy M; Ford, Eric A et al. (2014) Liver but not adipose tissue is responsive to the pattern of enteral feeding. Physiol Rep 2:e00250
Buckman, Laura B; Hasty, Alyssa H; Flaherty, David K et al. (2014) Obesity induced by a high-fat diet is associated with increased immune cell entry into the central nervous system. Brain Behav Immun 35:33-42
Belkhiri, Abbes; El-Rifai, Wael (2014) 5-Methylcytosine hydroxylation-mediated LINE-1 hypomethylation: a novel mechanism of proto-oncogenes activation in colorectal cancer? Gut 63:538-9
Horst, Sara; Shelby, Grace; Anderson, Julia et al. (2014) Predicting persistence of functional abdominal pain from childhood into young adulthood. Clin Gastroenterol Hepatol 12:2026-32
Smith, Stephen; Tripathi, Rati; Goodings, Charnise et al. (2014) LIM domain only-2 (LMO2) induces T-cell leukemia by two distinct pathways. PLoS One 9:e85883
Radin, Jana N; Gonzalez-Rivera, Christian; Frick-Cheng, Arwen E et al. (2014) Role of connexin 43 in Helicobacter pylori VacA-induced cell death. Infect Immun 82:423-32

Showing the most recent 10 out of 620 publications