The Novel Target Discovery and Assay Development Core (NTDAC) will provide investigators at UCLA, UCSD, the Salk Institute and Cedars-Sinai with consultancy and a suite of state-of-the-art molecular measurements not available from other national resources. The new NTDAC core assembles a comprehensive and highly specialized core with expertize in biological mass spectrometry and proteomics (Julian Whitelegge, Director) and ELISA assay development (Pinchas Cohen, Co-Director). Strengths of this biomedical core include the extensive expertise ofthe core leadership in diabetes research, wide experience in protein and peptide analysis, access to bioinformatics resources, and the collegial outreach of NTDAC leadership to DRC investigators to assist in the strategic planning and execution of studies relevant to the DRC mission. Core goals include: 1) provide an accessible user interface toward meeting objectives in a timely, cost effective, and integrated manner individualized to the specific needs of each DRC investigator, 2) provide discovery mass spectrometry services with appropriate bioinformafics for sensitive, accurate measurements with quality control, 3) provide biomarker qualificafion, immunocapture and top-down mass spectrometry for qualification of lead proteins and peptides with respect to biological function, 4) provide assay construction for novel peptides and proteins, and optimization of reliable assays toward the clinic, 5) provide ELISA services for novel assays for development of new clinical assays for better pafient outcomes in diabetes. The collective and complementary expertise of the core leadership is outstanding and provides DRC invesfigators with an opportunity to explore and implement experimental strategies that rely upon direct analysis of proteins and peptides. The new NTDAC core provides discovery proteomics and peptidomics, alongside the lipidomics component that has been introduced into the MMPC (core B). The core will synergize with the other DRC cores through many favorable interactions including identification of interaction partners (core A), integrafion with metabolism and physiology studies (core B) and enhanced bioinformatics resources related to the genomics and genetics cores (C &D). Collectively, our ability to study the proteins and peptides of insulin action, substrate metabolism, and inflammatory signaling will drive the UCSD-UCLA DRC fonfl/ard in discovery of critical biological molecules involved in the pathobiology of obesity and insulin resistance, and provide a foundation for the development of novel therapeutic strategies to combat diabetes and diabetes complications.

Public Health Relevance

The overarching function ofthe Novel Target Discovery and Assay Development Core (NTDAC) is to enable DRC members to investigate a clinically relevant research question in an open 'discovery'mode, from mouse to cell to patient in an efficient, cost-effective and expedited fashion. Discovery proteomics and peptidomics mass spectrometry experiments will reveal potential new biomarkers that will be qualified and validated before development of robust clinical ELISA assays for improving patient outcomes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
2P30DK063491-11
Application #
8443941
Study Section
Special Emphasis Panel (ZDK1-GRB-S (O2))
Project Start
Project End
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
11
Fiscal Year
2013
Total Cost
$204,327
Indirect Cost
Name
University of California San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Mahajan, Anubha (see original citation for additional authors) (2018) Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nat Genet 50:559-571
Hajek, Catherine; Guo, Xiuqing; Yao, Jie et al. (2018) Coronary Heart Disease Genetic Risk Score Predicts Cardiovascular Disease Risk in Men, Not Women. Circ Genom Precis Med 11:e002324
Malik, Rainer (see original citation for additional authors) (2018) Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet 50:524-537
Kulminski, Alexander M; Huang, Jian; Loika, Yury et al. (2018) Strong impact of natural-selection-free heterogeneity in genetics of age-related phenotypes. Aging (Albany NY) 10:492-514
Gao, Chuan; Tabb, Keri L; Dimitrov, Latchezar M et al. (2018) Exome Sequencing Identifies Genetic Variants Associated with Circulating Lipid Levels in Mexican Americans: The Insulin Resistance Atherosclerosis Family Study (IRASFS). Sci Rep 8:5603
Seyerle, A A; Sitlani, C M; Noordam, R et al. (2018) Pharmacogenomics study of thiazide diuretics and QT interval in multi-ethnic populations: the cohorts for heart and aging research in genomic epidemiology. Pharmacogenomics J 18:215-226
Yuan, Xiaomei; Dong, Yi; Tsurushita, Naoya et al. (2018) CD122 blockade restores immunological tolerance in autoimmune type 1 diabetes via multiple mechanisms. JCI Insight 3:
Svensson, Kristoffer; Dent, Jess R; Tahvilian, Shahriar et al. (2018) Defining the contribution of skeletal muscle pyruvate dehydrogenase alpha 1 (Pdha1) to exercise performance and insulin action. Am J Physiol Endocrinol Metab :
Wang, Bo; Rong, Xin; Palladino, Elisa N D et al. (2018) Phospholipid Remodeling and Cholesterol Availability Regulate Intestinal Stemness and Tumorigenesis. Cell Stem Cell 22:206-220.e4
Gong, J; Nishimura, K K; Fernandez-Rhodes, L et al. (2018) Trans-ethnic analysis of metabochip data identifies two new loci associated with BMI. Int J Obes (Lond) 42:384-390

Showing the most recent 10 out of 926 publications