The Novel Target Discovery and Assay Development Core (NTDAC) will provide investigators at UCLA, UCSD, the Salk Institute and Cedars-Sinai with consultancy and a suite of state-of-the-art molecular measurements not available from other national resources. The new NTDAC core assembles a comprehensive and highly specialized core with expertize in biological mass spectrometry and proteomics (Julian Whitelegge, Director) and ELISA assay development (Pinchas Cohen, Co-Director). Strengths of this biomedical core include the extensive expertise ofthe core leadership in diabetes research, wide experience in protein and peptide analysis, access to bioinformatics resources, and the collegial outreach of NTDAC leadership to DRC investigators to assist in the strategic planning and execution of studies relevant to the DRC mission. Core goals include: 1) provide an accessible user interface toward meeting objectives in a timely, cost effective, and integrated manner individualized to the specific needs of each DRC investigator, 2) provide discovery mass spectrometry services with appropriate bioinformafics for sensitive, accurate measurements with quality control, 3) provide biomarker qualificafion, immunocapture and top-down mass spectrometry for qualification of lead proteins and peptides with respect to biological function, 4) provide assay construction for novel peptides and proteins, and optimization of reliable assays toward the clinic, 5) provide ELISA services for novel assays for development of new clinical assays for better pafient outcomes in diabetes. The collective and complementary expertise of the core leadership is outstanding and provides DRC invesfigators with an opportunity to explore and implement experimental strategies that rely upon direct analysis of proteins and peptides. The new NTDAC core provides discovery proteomics and peptidomics, alongside the lipidomics component that has been introduced into the MMPC (core B). The core will synergize with the other DRC cores through many favorable interactions including identification of interaction partners (core A), integrafion with metabolism and physiology studies (core B) and enhanced bioinformatics resources related to the genomics and genetics cores (C &D). Collectively, our ability to study the proteins and peptides of insulin action, substrate metabolism, and inflammatory signaling will drive the UCSD-UCLA DRC fonfl/ard in discovery of critical biological molecules involved in the pathobiology of obesity and insulin resistance, and provide a foundation for the development of novel therapeutic strategies to combat diabetes and diabetes complications.

Public Health Relevance

The overarching function ofthe Novel Target Discovery and Assay Development Core (NTDAC) is to enable DRC members to investigate a clinically relevant research question in an open 'discovery'mode, from mouse to cell to patient in an efficient, cost-effective and expedited fashion. Discovery proteomics and peptidomics mass spectrometry experiments will reveal potential new biomarkers that will be qualified and validated before development of robust clinical ELISA assays for improving patient outcomes.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-S (O2))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
La Jolla
United States
Zip Code
Sen, Supriya; Langiewicz, Magda; Jumaa, Hassan et al. (2015) Deletion of serine/arginine-rich splicing factor 3 in hepatocytes predisposes to hepatocellular carcinoma in mice. Hepatology 61:171-83
Chung, H; Lee, Y S; Mayoral, R et al. (2015) Omega-3 fatty acids reduce obesity-induced tumor progression independent of GPR120 in a mouse model of postmenopausal breast cancer. Oncogene 34:3504-13
Adar, Sara D; Kaufman, Joel D; Diez-Roux, Ana V et al. (2015) Air pollution and percent emphysema identified by computed tomography in the Multi-Ethnic study of Atherosclerosis. Environ Health Perspect 123:144-51
Baker, Michael E; Hardiman, Gary (2014) Transcriptional analysis of endocrine disruption using zebrafish and massively parallel sequencing. J Mol Endocrinol 52:R241-56
Weizman, Adam; Huang, Brian; Berel, Dror et al. (2014) Clinical, serologic, and genetic factors associated with pyoderma gangrenosum and erythema nodosum in inflammatory bowel disease patients. Inflamm Bowel Dis 20:525-33
Bis, Joshua C; White, Charles C; Franceschini, Nora et al. (2014) Sequencing of 2 subclinical atherosclerosis candidate regions in 3669 individuals: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. Circ Cardiovasc Genet 7:359-64
Huang, Jie; Huffman, Jennifer E; Yamakuchi, Munekazu et al. (2014) Genome-wide association study for circulating tissue plasminogen activator levels and functional follow-up implicates endothelial STXBP5 and STX2. Arterioscler Thromb Vasc Biol 34:1093-101
Nalls, Mike A; Pankratz, Nathan; Lill, Christina M et al. (2014) Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nat Genet 46:989-93
Tang, Wenbo; Kowgier, Matthew; Loth, Daan W et al. (2014) Large-scale genome-wide association studies and meta-analyses of longitudinal change in adult lung function. PLoS One 9:e100776
Lubitz, Steven A; Lunetta, Kathryn L; Lin, Honghuang et al. (2014) Novel genetic markers associate with atrial fibrillation risk in Europeans and Japanese. J Am Coll Cardiol 63:1200-10

Showing the most recent 10 out of 323 publications