The Overall mission of the UCSD/UCLA/Salk/Cedars Sinai DRC continues to center on fostering research in the prevention and treatment of diabetes and its complications to ultimately improve the lives of patients. For the past decade, our DRC has been unique in linking together the diabetes/metabolism research activities of two major universities within the UC system and two outstanding Institutes in Southern California. We believe this has been a novel, and a very successful effort. The DRC has fostered new collaborations and interactions between outstanding scientists within and across these institutions. Our research base is comprised of the following focus areas: Nuclear Receptors, Cell Signaling, Metabolism, Diabetes Complications, and Islet/Beta Cell Biology. Each of these areas has outstanding leaders who facilitate interactions and sharing of resources. The DRC has played an important role in promoting the careers of young scientists as they move on to the status of independent investigators by awarding pilot and feasibility grants. As an acknowledgement of our success in this effort, UCSD and. UCLA have agreed to provide over $100,000/year in additional unrestricted funds to augment our P&F program The DRC will continue to advance scientific and intellectual interactions by organizing and facilitating meetings, lectures, and mentoring efforts that are part of our enrichment core. We will further accelerate diabetes research at the four DRC Institutions by providing state-of-the-art services through five cutting edge cores: A) Transgenic and Knock-out Mouse Core, B) Metabolic and Molecular Physiology Core, C) Epigenetics and Genomics Core, D) Human Genetics Core, and E) Novel Target Discovery and Assay Development Core. All of our research cores have been updated with new services and latest technologies in the upcoming project period to reflect the many advances in this field as they relate to diabetes and metabolism research. Our cores are heavily used by our DRC faculty that have been exceptionally successful as can be judged by the numerous publications in high impact journals (665) and the substantial peer review grant support that they have accrued ($154,601,201). The current competitive renewal application includes many new scientific and technological advancements, including the incorporation of novel genomic, proteomic, and metabolomics services that are now available to our members. As future directions, we will continue to strive for seamless integration of research at all participating institutions to enhance technology and research capability within the DRC and to promote translational research activity and collaborations with the CTSI programs at each institution.

Public Health Relevance

The UCSD/UCLA DRC will enhance research into the etiology, pathophysiology, treatment, and prevention of diabetes mellitus and its complications through facilitation of scientific exchange, advancement of the outstanding scientific faculty comprising our research base, by providing access to novel biomedical research cores and promoting the careers of young scientists. This will ultimately improve the lives of patients with diabetes, who will benefit from the advancements the center will generate.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-S (O2))
Program Officer
Hyde, James F
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
Internal Medicine/Medicine
Schools of Medicine
La Jolla
United States
Zip Code
Maggi, Maristella; Mittelman, Steven D; Parmentier, Jean Hugues et al. (2017) A protease-resistant Escherichia coli asparaginase with outstanding stability and enhanced anti-leukaemic activity in vitro. Sci Rep 7:14479
Kerr, Kathleen F; Avery, Christy L; Lin, Henry J et al. (2017) Genome-wide association study of heart rate and its variability in Hispanic/Latino cohorts. Heart Rhythm 14:1675-1684
Graff, Mariaelisa; Emery, Leslie S; Justice, Anne E et al. (2017) Genetic architecture of lipid traits in the Hispanic community health study/study of Latinos. Lipids Health Dis 16:200
Wang, Jiexin; Rajbhandari, Prashant; Damianov, Andrey et al. (2017) RNA-binding protein PSPC1 promotes the differentiation-dependent nuclear export of adipocyte RNAs. J Clin Invest 127:987-1004
Sobrin, Lucia; Chong, Yong He; Fan, Qiao et al. (2017) Genetically Determined Plasma Lipid Levels and Risk of Diabetic Retinopathy: A Mendelian Randomization Study. Diabetes 66:3130-3141
Ying, Wei; Wollam, Joshua; Ofrecio, Jachelle M et al. (2017) Adipose tissue B2 cells promote insulin resistance through leukotriene LTB4/LTB4R1 signaling. J Clin Invest 127:1019-1030
Xie, Huimin; Hoffmann, Hanne M; Iyer, Anita K et al. (2017) Chromatin status and transcription factor binding to gonadotropin promoters in gonadotrope cell lines. Reprod Biol Endocrinol 15:86
Gosselin, David; Skola, Dylan; Coufal, Nicole G et al. (2017) An environment-dependent transcriptional network specifies human microglia identity. Science 356:
Hernandez-Carretero, A; Weber, N; La Frano, M R et al. (2017) Obesity-induced changes in lipid mediators persist after weight loss. Int J Obes (Lond) :
Rong, Xin; Wang, Bo; Palladino, Elisa Nd et al. (2017) ER phospholipid composition modulates lipogenesis during feeding and in obesity. J Clin Invest 127:3640-3651

Showing the most recent 10 out of 781 publications