NIH-inifiated efforts to centralize expertise, instrumentafion, and facilifies to promote comprehensive evaluafion of genefically engineered mice, fissues and cells has improved our understanding of funcfional genomics and disease pathobiology. The Metabolic and Molecular Physiology Core (MMPC) provides investigators at UCLA, UCSD, Cedars-Sinai, and the Salk Institute with a series of state-of-the-art and costeffecfive molecular and physiological assays not readily available from nafional phenotyping centers. The MMPC is divided into four sub-cores: A) Insulin sensitivity and metabolism, B) Oxidative metabolism and mitochondrial biology, C) LIPID MAPS-lipidomics, and D) Inflammatory siganling, and each sub-core offers extensive training and consultafion on a variety of topics from experimental design to data interpretafion and integrafion. Specifically, the MMPC provides services to assess: movement, feeding behavior, indirect calorimetry, body composifion, glucose/insulin tolerance, insulin acfion, substrate metabolism and oxidative capacity, mitochondrial funcfion, circulafing and fissue lipids (lipidomics), circulafing hormones / adipokines / cytokines, and diabetes complicafions. The MMPC maintains a fissue bio-bank as well as a comprehensive database of standard protocols for a vast number of phenotyping techniques, and phenotypic outcomes for a wide variety of genefically engineered mice. The MMPC leadership includes top investigators from the fields of nuclear receptor biology, lipid metabolism, inflammafion, and adipocyte and skeletal muscle biology including: Peter Tontonoz, Andrea Hevener, Karen Reue, Rajendra Tangirala, Edward Dennis, Oswald Quehenberger. Strengths of the MMPC include the well-rounded and complementary expertise of its leadership and the excepfional track record of producfivity and high impact scientific publicafions. The collaborafive spirit ofthe MMPC team fosters a collegial environment and supports service well-coordinated with other DRC cores and institufional resources. The central goal ofthe MMPC is to advance the scientific capabilifies ofthe DRC membership in leading-edge metabolic analysis to improve overall research quality with enhanced translafiori of research ideas from cell, fissue and mouse to man.

Public Health Relevance

The UCSD-UCLA Metabolic and Molecular Physiology Core provides DRC investigators studying obesity, diabetes and diabetes-related complications access to novel, state-of-the-art in vivo and molecular analyses of metabolism, insulin action and inflammation, thus improving overall research quality and impact by enahncing translation of scientific ideas from cell, tissue and mouse to man.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK063491-12
Application #
8641340
Study Section
Special Emphasis Panel (ZDK1-GRB-S)
Project Start
Project End
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
12
Fiscal Year
2014
Total Cost
$327,904
Indirect Cost
$39,840
Name
University of California San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Keaton, Jacob M; Hellwege, Jacklyn N; Ng, Maggie C Y et al. (2016) GENOME-WIDE INTERACTION WITH SELECTED TYPE 2 DIABETES LOCI REVEALS NOVEL LOCI FOR TYPE 2 DIABETES IN AFRICAN AMERICANS. Pac Symp Biocomput 22:242-253
Below, Jennifer E; Parra, Esteban J; Gamazon, Eric R et al. (2016) Meta-analysis of lipid-traits in Hispanics identifies novel loci, population-specific effects, and tissue-specific enrichment of eQTLs. Sci Rep 6:19429
Chung, Heekyung; Chou, Winjet; Sears, Dorothy D et al. (2016) Time-restricted feeding improves insulin resistance and hepatic steatosis in a mouse model of postmenopausal obesity. Metabolism 65:1743-1754
Wang, Shuai; Zhao, Jing Hua; An, Ping et al. (2016) General Framework for Meta-Analysis of Haplotype Association Tests. Genet Epidemiol 40:244-52
Golden, Diana; Kolmakova, Antonina; Sura, Sunitha et al. (2016) Lymphocyte activation gene 3 and coronary artery disease. JCI Insight 1:e88628
Gholkar, Ankur A; Senese, Silvia; Lo, Yu-Chen et al. (2016) The X-Linked-Intellectual-Disability-Associated Ubiquitin Ligase Mid2 Interacts with Astrin and Regulates Astrin Levels to Promote Cell Division. Cell Rep 14:180-8
Larson, Nicholas B; Decker, Paul A; Wassel, Christina L et al. (2016) Blood group antigen loci demonstrate multivariate genetic associations with circulating cellular adhesion protein levels in the Multi-Ethnic Study of Atherosclerosis. Hum Genet 135:415-23
Tian, Xiao Yu; Ganeshan, Kirthana; Hong, Cynthia et al. (2016) Thermoneutral Housing Accelerates Metabolic Inflammation to Potentiate Atherosclerosis but Not Insulin Resistance. Cell Metab 23:165-78
(2016) A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape. Nat Commun 7:13357
Sajuthi, Satria P; Sharma, Neeraj K; Chou, Jeff W et al. (2016) Mapping adipose and muscle tissue expression quantitative trait loci in African Americans to identify genes for type 2 diabetes and obesity. Hum Genet 135:869-80

Showing the most recent 10 out of 706 publications