Cell models are instrumental for studying basic and applied aspects of gene and molecular therapy for cystic fibrosis (CF). Human airway epithelial cell cultures maintained at an air-liquid interface and displaying mucociliary differentiation similar to the in vivo epithelium faithfully reproduce high resistance to gene therapy vectors characteristic of the native human mucosa. There cultures facilitate understanding vector interaction with target cells and provide a strong platform for pre-clinical studies vital to the success of gene and molecular therapy for CF. A Tissue Procurement and Cell Culture Core was established at the University of North Carolina (UNC) in 1984, under the auspices of the CF Foundation, to provide standardized cell cultures to CF researchers. The Core has supported UNC Gene Therapy for CF projects since 1993 and has increased its output and capabilities to meet growing research demands. The Core routinely makes available cells and media that are unavailable and/or prohibitively expensive if purchased from commercial suppliers. The Core has focused on providing human airway epithelial cell cultures to UNC CF Center investigators. The present application will support continuing essential services and will increase the range of services to the University -wide gene and molecular therapy community. The Core provides human airway epithelial cells in environments more representative of in vivo conditions, supports relevant in vivo models and supplies additional cell types including progenitor cells. To accomplish these goals, we propose the following specific aims;1) to provide normal and CF human and mouse airway epithelial cells in model systems reproducing important elements of the in vivo airway environment, 2) to cost effectively provide additional lung cell types that are high priority targets for the UNC gene and molecular therapy community, and 3) to cost effectively provide liver and intestine cell types under investigation by the UNC gene and molecular community. Through these functions, and in conjunction with the other Cores in this application, the Cell Models Core will foster collaborations directed at improving vector efficiency to both the airway epithelium and additional cell and organ systems relevant to the research mission of NIDDK.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Chapel Hill
United States
Zip Code
Ostrowski, L E; Yin, W; Patel, M et al. (2014) Restoring ciliary function to differentiated primary ciliary dyskinesia cells with a lentiviral vector. Gene Ther 21:253-61
Morales Johansson, Helena; Newman, Donna R; Sannes, Philip L (2014) Whole-genome analysis of temporal gene expression during early transdifferentiation of human lung alveolar epithelial type 2 cells in vitro. PLoS One 9:e93413
Henderson, Ashley G; Ehre, Camille; Button, Brian et al. (2014) Cystic fibrosis airway secretions exhibit mucin hyperconcentration and increased osmotic pressure. J Clin Invest 124:3047-60
Saini, Yogesh; Dang, Hong; Livraghi-Butrico, Alessandra et al. (2014) Gene expression in whole lung and pulmonary macrophages reflects the dynamic pathology associated with airway surface dehydration. BMC Genomics 15:726
Esther Jr, Charles R; Boucher, Richard C; Johnson, M Ross et al. (2014) Airway drug pharmacokinetics via analysis of exhaled breath condensate. Pulm Pharmacol Ther 27:76-82
Cholon, Deborah M; Quinney, Nancy L; Fulcher, M Leslie et al. (2014) Potentiator ivacaftor abrogates pharmacological correction of ?F508 CFTR in cystic fibrosis. Sci Transl Med 6:246ra96
Tadokoro, Tomomi; Wang, Yang; Barak, Larry S et al. (2014) IL-6/STAT3 promotes regeneration of airway ciliated cells from basal stem cells. Proc Natl Acad Sci U S A 111:E3641-9
Bove, Peter F; Dang, Hong; Cheluvaraju, Chaitra et al. (2014) Breaking the in vitro alveolar type II cell proliferation barrier while retaining ion transport properties. Am J Respir Cell Mol Biol 50:767-76
Guo, Xueliang; Zheng, Shuo; Dang, Hong et al. (2014) Genome reference and sequence variation in the large repetitive central exon of human MUC5AC. Am J Respir Cell Mol Biol 50:223-32
Schwab, Ute; Abdullah, Lubna H; Perlmutt, Olivia S et al. (2014) Localization of Burkholderia cepacia complex bacteria in cystic fibrosis lungs and interactions with Pseudomonas aeruginosa in hypoxic mucus. Infect Immun 82:4729-45

Showing the most recent 10 out of 57 publications