The Vector Labs are structured and organized under a new paradigm for Vector Core operations that is designed to provide investigators with a single source that can supply their vector needs throughout the development of the research programs. The labs utilize an integrated systems approach to speed the flow of vector technologies and information. These systems are designed to provide comprehensive resources to investigators so they can avoid many of the common pitfalls and delays that occur during the translational research period. These pitfalls and delays are caused when a specific vector-disease approach must transition from a basic research environment into the highly regulated and controlled processes of final preclinical safety testing and human clinical trials. The UNC Vector Labs will support MTCC investigators by providing expertise with vector design, construction, and development as well as by providing investigators with the viral vector reagents themselves. Investigators will be able to select the optimal type of viral platform (adenoviral, AAV, lentiviral, retroviral, PIV, cell-based, or plasmid) for the specific research in which they are involved. Investigators can also select from a range of standard quality grades (research, preclinical, or clinical), or can custom design intermediate grades as necessary. The combined staff at the Vector Labs and the Gene Therapy Center have prior experience in bringing to clinical trials virtually all the major viral platforms. Investigators will be able to utilize this experience to aid in creating drug development templates as their research progresses into the clinical arena.

Public Health Relevance

The Vector Core will provide a broad range of services that will benefit public health. Its foremost mission is to provide gene transfer vectors that will treat people with genetic diseases. An important parallel mission is to develop gene transfer vectors that may aid in immunization of the general population to a variety of communicable diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
3P30DK065988-10S1
Application #
8851228
Study Section
Special Emphasis Panel (ZDK1-GRB-1)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
10
Fiscal Year
2014
Total Cost
$68,400
Indirect Cost
$23,400
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Hussain, Shah S; George, Shebin; Singh, Shashi et al. (2018) A Small Molecule BH3-mimetic Suppresses Cigarette Smoke-Induced Mucous Expression in Airway Epithelial Cells. Sci Rep 8:13796
Agostini, Maria L; Andres, Erica L; Sims, Amy C et al. (2018) Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. MBio 9:
Tomati, Valeria; Caci, Emanuela; Ferrera, Loretta et al. (2018) Thymosin ?-1 does not correct F508del-CFTR in cystic fibrosis airway epithelia. JCI Insight 3:
Kim, Christine Seulki; Ahmad, Saira; Wu, Tongde et al. (2018) SPLUNC1 is an allosteric modulator of the epithelial sodium channel. FASEB J 32:2478-2491
Polineni, Deepika; Dang, Hong; Gallins, Paul J et al. (2018) Airway Mucosal Host Defense Is Key to Genomic Regulation of Cystic Fibrosis Lung Disease Severity. Am J Respir Crit Care Med 197:79-93
Abdullah, Lubna H; Coakley, Raymond; Webster, Megan J et al. (2018) Mucin Production and Hydration Responses to Mucopurulent Materials in Normal versus Cystic Fibrosis Airway Epithelia. Am J Respir Crit Care Med 197:481-491
Duncan, Gregg A; Kim, Namho; Colon-Cortes, Yanerys et al. (2018) An Adeno-Associated Viral Vector Capable of Penetrating the Mucus Barrier to Inhaled Gene Therapy. Mol Ther Methods Clin Dev 9:296-304
Gentzsch, Martina; Mall, Marcus A (2018) Ion Channel Modulators in Cystic Fibrosis. Chest 154:383-393
Terryah, Shawn T; Fellner, Robert C; Ahmad, Saira et al. (2018) Evaluation of a SPLUNC1-derived peptide for the treatment of cystic fibrosis lung disease. Am J Physiol Lung Cell Mol Physiol 314:L192-L205
Gillen, Austin E; Yang, Rui; Cotton, Calvin U et al. (2018) Molecular characterization of gene regulatory networks in primary human tracheal and bronchial epithelial cells. J Cyst Fibros 17:444-453

Showing the most recent 10 out of 133 publications