The Molecular Biology and Mouse Core component of the MTCC will serve the gene transfer community by providing mouse models relevant to cystic fibrosis (CF) gene transfer and access to molecular biology equipment and expertise. Although not always predictive of results in human trials, animal models are nonetheless useful for establishing efficacy of vectors and understanding levels of gene expression necessary for functional correction. For pilot studies designed to evaluate new AAV vectors in the context of the gut, the CFTR-deficient mouse model will be provided. This model shows a highly significant gut phenotype that is very similar to human cystic fibrosis (CF). Additionally, for lung studies, the Core will provide p-ENaC over-expressing mice on an inbred background (C57BI/6N) and the same mice bred to the CFTR-deficient mice. Both of these mice provide a model for gene transfer to a mucus-filled, inflamed airway that might be typical of a human CF lung. The lack of CFTR in the (3-ENaC-CFTR model provides an opportunity to explore CFTR gene transfer in a very relevant system. To support pilot project efforts, the Core will also aid in the generation and maintenance of Dnail- and selected mucin-deficient mice. As a second major focus, the Core will assist investigators with molecular biology needs by providing access to relevant equipment and conducting specialized molecular biology services. To reach these objectives, the Core will maintain and provide access to specialized instrumentation, specifically to evaluate the quality and quantity of RNA and DMA and to conduct quantitative real-time PCR. The Core will also provide qPCR services for individuals conducting gene transfer who need to evaluate mRNA expression levels, e.g., expression of CFTR after gene transfer. In addition, the Core will be the centralized location to coordinate access to and evaluation of a library of institutionally obtained shRNA lentiviral vectors. The Core will serve to validate available shRNA vectors for functional knock-down and subsequently provide plasmids to the Vector Core for production. And finally, the Core will be the centralized location for Affymetrix gene array analysis for evaluating the disease development in the p-ENaC over-expressing mice, an effort that will help to unravel the pathogenesis in this model and provide clues to early changes in the physiology and cell biology of the lung in the context of a CF-like disease. Such information may well identify new targets for therapy. The Molecular Biology and Mouse Core has built a solid foundation of equipment and expertise. As such, use of the Core should improve efficiency and quality of the entire MTCC effort.

Public Health Relevance

The Molecular Biology and Mouse Core will support faculty and staff conducting research related to gene transfer for diseases such as cystic fibrosis. Additionally, it supports research related to understanding the molecular mechanisms that lead to disease and hinder gene transfer. The results of these studies should also have broad relevance to other pulmonary diseases. Thus, the research proposed has direct relevance to public health.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Chapel Hill
United States
Zip Code
Ostrowski, L E; Yin, W; Patel, M et al. (2014) Restoring ciliary function to differentiated primary ciliary dyskinesia cells with a lentiviral vector. Gene Ther 21:253-61
Morales Johansson, Helena; Newman, Donna R; Sannes, Philip L (2014) Whole-genome analysis of temporal gene expression during early transdifferentiation of human lung alveolar epithelial type 2 cells in vitro. PLoS One 9:e93413
Henderson, Ashley G; Ehre, Camille; Button, Brian et al. (2014) Cystic fibrosis airway secretions exhibit mucin hyperconcentration and increased osmotic pressure. J Clin Invest 124:3047-60
Saini, Yogesh; Dang, Hong; Livraghi-Butrico, Alessandra et al. (2014) Gene expression in whole lung and pulmonary macrophages reflects the dynamic pathology associated with airway surface dehydration. BMC Genomics 15:726
Esther Jr, Charles R; Boucher, Richard C; Johnson, M Ross et al. (2014) Airway drug pharmacokinetics via analysis of exhaled breath condensate. Pulm Pharmacol Ther 27:76-82
Cholon, Deborah M; Quinney, Nancy L; Fulcher, M Leslie et al. (2014) Potentiator ivacaftor abrogates pharmacological correction of ?F508 CFTR in cystic fibrosis. Sci Transl Med 6:246ra96
Tadokoro, Tomomi; Wang, Yang; Barak, Larry S et al. (2014) IL-6/STAT3 promotes regeneration of airway ciliated cells from basal stem cells. Proc Natl Acad Sci U S A 111:E3641-9
Bove, Peter F; Dang, Hong; Cheluvaraju, Chaitra et al. (2014) Breaking the in vitro alveolar type II cell proliferation barrier while retaining ion transport properties. Am J Respir Cell Mol Biol 50:767-76
Guo, Xueliang; Zheng, Shuo; Dang, Hong et al. (2014) Genome reference and sequence variation in the large repetitive central exon of human MUC5AC. Am J Respir Cell Mol Biol 50:223-32
Schwab, Ute; Abdullah, Lubna H; Perlmutt, Olivia S et al. (2014) Localization of Burkholderia cepacia complex bacteria in cystic fibrosis lungs and interactions with Pseudomonas aeruginosa in hypoxic mucus. Infect Immun 82:4729-45

Showing the most recent 10 out of 57 publications