The UNC CFRTCC has set as its long-term goal the systemic cure of the cystic fibrosis (CF) phenotype. There is a broad need on the UNC-CH campus for a Core Research Center to synergize and accelerate the pace of therapeutics development for CF. Our CF research base is broad and encompasses groups with expertise in CFTR biogenesis/ion transport, gene therapy, epithelial cell biology, mucus/mucin biochemistry and biophysics, microbiology/immunology, pulmonary transplant, and clinical research. This group of investigators with CF therapeutic interests includes presently > 60 faculty. To accelerate therapeutics development on the UNC-CH campus, there are needs for accurate and efficient in vivo and in vitro preclinical evaluation of therapeutic agents, access to diverse and sufficient supplies of epithelial cells (Respiratory, GI), access to new mucus/mucin technologies relevant to CF pathogenesis, and a clinical research network that provides patient specimens, clinical testing, and advisory services necessary for the therapeutics development process. In response to these needs, we have proposed a CF RTCC with four service cores that intend to provide access to their reagents/technologies for UNC, national, and international investigators. The CF RTCC will service a broad spectrum of therapies, including new chemical entities (NCEs), gene transfer vectors, and gene modification approaches. The four service cores include: (1) the Preclinical Core (Martina Gentzsch, PI),which will offer state of the art in vitro measures of CFTR function in airway and GI systems, complemented by novel CFTR knock-in and ENaC mice for in vivo studies of CF molecular pathogenesis and airways disease; (2) the Cell Models Core (Scott Randell, PI),which builds on its world class experience in providing high quality primary, P1, P2, and immortalized cells, adding novel technologies utilizing the Georgetown technique and a spectrum of respiratory and GI organospheres; (3) the Mucus Biochemistry and Biophysics Core Core (Brian Button, PI), which will provide access to unparalleled new measures of the key biochemical and biophysical mucus abnormalities that relate to CF pathogenesis for therapeutics development and novel biomarker development; and (4) The Clinical Translation Core (Scott Donaldson, PI), which will provide of the requisite respiratory and GI biopsies for genotype specific studies, validate novel sputum biomarkers for drug development, generate sputum repositories, bring a spectrum of novel imaging technologies (including F19 based MRI ventilation/washout kinetics measures) into the CF field, and provide general advice to the UNC CF and outside communities to with respect to therapeutics development. These Cores will be supported by an Administrative Core (Core A- R. Boucher, PI) which will oversee all budgetary, communication, and program enhancement functions. The UNC CF RTCC core is designed to provide a wide spectrum of services that are critical for CF therapeutics development in a fashion that we trust will be inclusive and helpful.

Public Health Relevance

The CF RTCC provides a mechanism to accelerate the development of novel therapies for a major muco- obstructive lung disease with a defined genetic etiology, i.e. cystic fibrosis. The principles and, indeed, therapies for CF may have broad applications to other muco-obstructive lung diseases, including asthma and COPD, that afflict residents of the U.S.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK065988-12
Application #
9058031
Study Section
Special Emphasis Panel (ZDK1)
Program Officer
Eggerman, Thomas L
Project Start
2004-04-01
Project End
2020-03-31
Budget Start
2016-04-01
Budget End
2017-03-31
Support Year
12
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Panganiban, Ronald A; Sun, Maoyun; Dahlin, Amber et al. (2018) A functional splice variant associated with decreased asthma risk abolishes the ability of gasdermin B to induce epithelial cell pyroptosis. J Allergy Clin Immunol 142:1469-1478.e2
Muhlebach, Marianne S; Hatch, Joseph E; Einarsson, Gisli G et al. (2018) Anaerobic bacteria cultured from cystic fibrosis airways correlate to milder disease: a multisite study. Eur Respir J 52:
Ghaedi, Mahboobe; Le, Andrew V; Hatachi, Go et al. (2018) Bioengineered lungs generated from human iPSCs-derived epithelial cells on native extracellular matrix. J Tissue Eng Regen Med 12:e1623-e1635
Livraghi-Butrico, Alessandra; Wilkinson, Kristen J; Volmer, Allison S et al. (2018) Lung disease phenotypes caused by overexpression of combinations of ?-, ?-, and ?-subunits of the epithelial sodium channel in mouse airways. Am J Physiol Lung Cell Mol Physiol 314:L318-L331
Chen, Gang; Volmer, Allison S; Wilkinson, Kristen J et al. (2018) Role of Spdef in the Regulation of Muc5b Expression in the Airways of Naive and Mucoobstructed Mice. Am J Respir Cell Mol Biol 59:383-396
Goralski, Jennifer L; Wu, Dan; Thelin, William R et al. (2018) The in vitro effect of nebulised hypertonic saline on human bronchial epithelium. Eur Respir J 51:
Hussain, Shah S; George, Shebin; Singh, Shashi et al. (2018) A Small Molecule BH3-mimetic Suppresses Cigarette Smoke-Induced Mucous Expression in Airway Epithelial Cells. Sci Rep 8:13796
Agostini, Maria L; Andres, Erica L; Sims, Amy C et al. (2018) Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. MBio 9:
Tomati, Valeria; Caci, Emanuela; Ferrera, Loretta et al. (2018) Thymosin ?-1 does not correct F508del-CFTR in cystic fibrosis airway epithelia. JCI Insight 3:
Kim, Christine Seulki; Ahmad, Saira; Wu, Tongde et al. (2018) SPLUNC1 is an allosteric modulator of the epithelial sodium channel. FASEB J 32:2478-2491

Showing the most recent 10 out of 133 publications