Numerous investigators within the current P30 application have indicated a need for 1) primary human airway epithelial cells (from lung transplantation) or nasal epithelial cells from CF and non-CF individuals;2) measurements of the functional anatomy of respiratory epithelia that track airway surface liquid homeostasis, ciliary beating, and mucociliary transport;or 3) CFTR bioelectric assays in human subjects. Core C is intended to provide the necessary expertise and supply these reagents in a centralized, standard format. The Core will facilitate transition from in vitro proof of concept studies to in vivo analysis, and furnish expertise in cell culture, airway physiology, and human translational science.
The specific aims of Core C are:
Specific Aim 1 : To procure, grow, and distribute well-differentiated primary human airway epithelial cells from CF and non-CF donors. The Core will interface with human subjects to (1) procure, derive, and grow cells from lung transplants, nasal polypectomies, or nasal brushings;(2) maintain a robust informatics system that includes clinical information regarding consenting subjects, CFTR genotyping, performance of cells in culture, and a large repository of frozen cells for the P30 Center;and (3) provide quality assurance and regulatory expertise necessary to protect the rights and safety of human subjects, including IRB submissions, material transfer agreements, and HIPAA compliance.
Specific Aim 2 : To conduct functional anatomic imaging of airway epithelia by 1-micron resolution Spectral Domain-Optical Coherence Tomography (?mu?OCT) in vitro and ex vivo. The Core will conduct ?mu?OCT imaging of the functional anatomy of respiratory epithelia in (1) fully-differentiated primary epithelial cells (of human or non-human origin);and (2) intact full-thickness tracheas from animal (e.g. pig, ferret, rat) or human origin.
Specific Aim 3 : To support the design and conduct in vivo measurements of CFTR activity in human subjects. The Core will provide expertise in the conduct of NPD measurements, assist in the development of new in vivo assays of CFTR activity (e.g intestinal current measurements), and provide data management, biostatistical, and regulatory expertise to assist in the design, conduct, and interpretation of CF clinical trials utilizing these in vivo capabilities. As such, Core C is poised to """"""""bridge the gap"""""""" between in vitro proof of concept studies, new clinical insight regarding disease mechanisms, and clinical translation of novel CF therapeutics.

Public Health Relevance

(See Instructions):

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
2P30DK072482-06
Application #
8320682
Study Section
Special Emphasis Panel (ZDK1-GRB-7 (J1))
Project Start
Project End
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
6
Fiscal Year
2012
Total Cost
$193,380
Indirect Cost
$61,380
Name
University of Alabama Birmingham
Department
Type
DUNS #
063690705
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Peabody, Jacelyn E; Shei, Ren-Jay; Bermingham, Brent M et al. (2018) Seeing cilia: imaging modalities for ciliary motion and clinical connections. Am J Physiol Lung Cell Mol Physiol 314:L909-L921
Davies, Jane C; Moskowitz, Samuel M; Brown, Cynthia et al. (2018) VX-659-Tezacaftor-Ivacaftor in Patients with Cystic Fibrosis and One or Two Phe508del Alleles. N Engl J Med 379:1599-1611
Keating, Dominic; Marigowda, Gautham; Burr, Lucy et al. (2018) VX-445-Tezacaftor-Ivacaftor in Patients with Cystic Fibrosis and One or Two Phe508del Alleles. N Engl J Med 379:1612-1620
Tipirneni, Kiranya E; Zhang, Shaoyan; Cho, Do-Yeon et al. (2018) Submucosal gland mucus strand velocity is decreased in chronic rhinosinusitis. Int Forum Allergy Rhinol 8:509-512
Serocki, Marcin; Bartoszewska, Sylwia; Janaszak-Jasiecka, Anna et al. (2018) miRNAs regulate the HIF switch during hypoxia: a novel therapeutic target. Angiogenesis 21:183-202
Brand, Jeffrey D; Lazrak, Ahmed; Trombley, John E et al. (2018) Influenza-mediated reduction of lung epithelial ion channel activity leads to dysregulated pulmonary fluid homeostasis. JCI Insight 3:
Cho, Do-Yeon; Lim, Dong-Jin; Mackey, Calvin et al. (2018) l-Methionine anti-biofilm activity against Pseudomonas aeruginosa is enhanced by the cystic fibrosis transmembrane conductance regulator potentiator, ivacaftor. Int Forum Allergy Rhinol 8:577-583
Guimbellot, Jennifer S; Acosta, Edward P; Rowe, Steven M (2018) Sensitivity of ivacaftor to drug-drug interactions with rifampin, a cytochrome P450 3A4 inducer. Pediatr Pulmonol 53:E6-E8
Solomon, George M; Bronsveld, Inez; Hayes, Kathryn et al. (2018) Standardized Measurement of Nasal Membrane Transepithelial Potential Difference (NPD). J Vis Exp :
Reeves, Emer P; O'Dwyer, Ciara A; Dunlea, Danielle M et al. (2018) Ataluren, a New Therapeutic for Alpha-1 Antitrypsin-Deficient Individuals with Nonsense Mutations. Am J Respir Crit Care Med 198:1099-1102

Showing the most recent 10 out of 175 publications