The Model Organisms Core will employ two genetically-tractable systems, the yeast S. cerevisiae and the zebrafish D. rerio, each with distinct advantages. These experimental systems will help dissect fundamental aspects of kidney development and protein structure and function. Experiments associated with these model systems will be complemented by the use of small molecule modulators that have emerged from Core associated activities over the past four years. Hypotheses arising from the unique attributes of the yeast and zebrafish models and from the use of chemical modulators will continue to be tested in higher cell types and organisms via the other Cores. In turn, experiments using yeast and zebrafish provide rapid assessments of predictions from more complex systems. The goals of the Yeast Core are to develop and continue to utilize established expression systems for wild type and disease-causing proteins that transit the secretory pathway in kidney cells. Genomic and proteomic attacks will identify factors that impact their biogenesis, and the mechanism of action of these factors will be established. Toward these goals, the Yeast Core has created over a dozen expression systems and offers collaborators the expertise and tools to co-opt this model organism. Specific assays developed in the Core include methods to assess how chaperones, the ubiquitin proteasome pathway, autophagy, and chemical chaperones impact secretory protein biogenesis. The Zebrafish Core will utilize established transgenic kidney reporter lines and to utilize established automated screening technologies in small molecule screens to identify chemical probes for kidney development and disease. The Zebrafish Core has a number of transgenic lines and identified small molecules that impact kidney development, and has pinpointed when specific factors act during kidney development. Collaborators will be able to establish and analyze results from newly created zebrafish lines and perform small molecule screens. Overall, the knowledge gained from the use of these complementary model organisms will be expanded via collaborations with the other Cores, and in turn the hypotheses that arise from more complex systems can be rapidly and in some cases more thoroughly tested in yeast and zebrafish. The Core will co-

Public Health Relevance

;The Pittsburgh Center for Kidney Research Model Organisms Core utilizes complementary genetic systems to define how renal proteins mature and how kidney progenitors develop. These genetic strategies are complemented by experiments using recently isolated small molecules that affect protein function and renal cell homeostasis. The Core's goal is to decipher how kidney diseases arise and can be treated.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-6 (M2))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
United States
Zip Code
Chang, Andy; Yeung, Steven; Thakkar, Arvind et al. (2015) Prevention of skin carcinogenesis by the ?-blocker carvedilol. Cancer Prev Res (Phila) 8:27-36
Jackson, Edwin K; Cheng, Dongmei; Verrier, Jonathan D et al. (2014) Interactive roles of CD73 and tissue nonspecific alkaline phosphatase in the renal vascular metabolism of 5'-AMP. Am J Physiol Renal Physiol 307:F680-5
Novitskaya, Tatiana; McDermott, Lee; Zhang, Ke Xin et al. (2014) A PTBA small molecule enhances recovery and reduces postinjury fibrosis after aristolochic acid-induced kidney injury. Am J Physiol Renal Physiol 306:F496-504
Morrell, Eric D; Kellum, John A; Hallows, Kenneth R et al. (2014) Epithelial transport during septic acute kidney injury. Nephrol Dial Transplant 29:1312-9
Prakasam, H Sandeep; Gallo, Luciana I; Li, Hui et al. (2014) A1 adenosine receptor-stimulated exocytosis in bladder umbrella cells requires phosphorylation of ADAM17 Ser-811 and EGF receptor transactivation. Mol Biol Cell 25:3798-812
Schuler, P J; Saze, Z; Hong, C-S et al. (2014) Human CD4+ CD39+ regulatory T cells produce adenosine upon co-expression of surface CD73 or contact with CD73+ exosomes or CD73+ cells. Clin Exp Immunol 177:531-43
Chen, Jingxin; Kleyman, Thomas R; Sheng, Shaohu (2014) Deletion of ?-subunit exon 11 of the epithelial Na+ channel reveals a regulatory module. Am J Physiol Renal Physiol 306:F561-7
Hecht, Karen A; O'Donnell, Allyson F; Brodsky, Jeffrey L (2014) The proteolytic landscape of the yeast vacuole. Cell Logist 4:e28023
Nirmal, J; Wolf-Johnston, A S; Chancellor, M B et al. (2014) Liposomal inhibition of acrolein-induced injury in rat cultured urothelial cells. Int Urol Nephrol 46:1947-52
Yao, Mingyi; Rogers, Natasha M; Csányi, Gábor et al. (2014) Thrombospondin-1 activation of signal-regulatory protein-? stimulates reactive oxygen species production and promotes renal ischemia reperfusion injury. J Am Soc Nephrol 25:1171-86

Showing the most recent 10 out of 156 publications