The Single Nephron and Metabolomics Core will provide an important national resource for investigators who wish to define the expression, localization and functional characteristics of transport and other relevant proteins in single nephron tubules or defined renal epithelial cells. Moreover, metabolomics services will be available to measure changes in levels of small molecules involved in regulating nephron function. It is expected that the data generated from this Core will be complemented by analyses performed in other Center Cores, such as the Cellular Physiology and Kidney Imaging Cores. The Single Nephron and Metabolomics Core aims to offer an integrated approach including functional (including in vitro microperfusion of isolated segments, measurements of transepithelial ion/solute fluxes, fluorescence functional imaging of single tubular cells), biochemical (microassays of enzyme/transporter activity), molecular (single tubule quantitative PCR and immunoblotting), and analytical (renal metabolomics) strategies applied to microdissected tubules to address relevant questions proposed by users. Furthermore the Core will provide expertise in design and implementation of single nephron/cell studies and instruction in the technical aspects of all services offered by the Core. The specific objectives of the Core are to: (1) provide microdissected tubules for quantification of mRNA abundance (real time PCR) and protein expression (immunoblotting), immunolocalization, and enzyme/transporter microassays;(2) perform functional fluorescence assays of channel/transporter function in isolated tubules microperfused in vitro;(3) perform measurements of transepithelial ion/solute fluxes across isolated tubules microperfused in vitro;(4) quantify mRNA and protein abundance in urinary exosomes;(5) perform metabolomics analyses of microdissected tubules and perfusate;and (6) provide training in all of the above.

Public Health Relevance

This Core offers a functional, biochemical, molecular, and analytical approach applied to microdissected tubules and defined renal epithelial cells to address relevant questions proposed by users. Core B's expertise in measuring transport of ions, solutes and other molecules across renal epithelial cell membranes, available in few labs nationally, promises to provide novel insight into our understanding of kidney disease.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-6)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
United States
Zip Code
Ikeda, Y; Zabbarova, I; Schaefer, C M et al. (2017) Fgfr2 is integral for bladder mesenchyme patterning and function. Am J Physiol Renal Physiol 312:F607-F618
Pavlov, Tengis S; Levchenko, Vladislav; Ilatovskaya, Daria V et al. (2017) Lack of Effects of Metformin and AICAR Chronic Infusion on the Development of Hypertension in Dahl Salt-Sensitive Rats. Front Physiol 8:227
Dai, Yan; Chen, Anqun; Liu, Ruijie et al. (2017) Retinoic acid improves nephrotoxic serum-induced glomerulonephritis through activation of podocyte retinoic acid receptor ?. Kidney Int 92:1444-1457
Jackson, Edwin K; Mi, Zaichuan (2017) 8-Aminoguanosine Exerts Diuretic, Natriuretic, and Glucosuric Activity via Conversion to 8-Aminoguanine, Yet Has Direct Antikaliuretic Effects. J Pharmacol Exp Ther 363:358-366
Klemens, Christine A; Edinger, Robert S; Kightlinger, Lindsay et al. (2017) Ankyrin G Expression Regulates Apical Delivery of the Epithelial Sodium Channel (ENaC). J Biol Chem 292:375-385
Jackson, Edwin K; Zhang, Yumeng; Cheng, Dongmei (2017) Alkaline Phosphatase Inhibitors Attenuate Renovascular Responses to Norepinephrine. Hypertension 69:484-493
Al-Bataineh, Mohammad M; Sutton, Timothy A; Hughey, Rebecca P (2017) Novel roles for mucin 1 in the kidney. Curr Opin Nephrol Hypertens 26:384-391
Kullmann, Florenta Aura (2017) A new player in interstitial cystitis/bladder pain syndrome: platelet-activating factor - PAF and its connection to smoking. Physiol Rep 5:
Al-Qusairi, Lama; Basquin, Denis; Roy, Ankita et al. (2017) Renal Tubular Ubiquitin-Protein Ligase NEDD4-2 Is Required for Renal Adaptation during Long-Term Potassium Depletion. J Am Soc Nephrol 28:2431-2442
Eshbach, Megan L; Weisz, Ora A (2017) Receptor-Mediated Endocytosis in the Proximal Tubule. Annu Rev Physiol 79:425-448

Showing the most recent 10 out of 341 publications