Fluorescent protein biosensors have grown into one of the most powerful tools for the study of cell biology. When combined with intravital microscopy, these biosensors have the potential to sensitively interrogate molecular, physiological and physical events occurring within living cells In the most relevant, in vivo setting. However, the utility of fluorescent protein biosensors for in vivo study has been limited by the difficulty of in vivo gene delivery, largely restricting their application to studies of cells in, or derived from transgenic animals, in order to realize the potential of fluorescent biosensors for studying cell biology in vivo, flexible methods of in vivo gene delivery must be developed. The goal of the Probe Delivery Core is to develop and characterize simple, inexpensive and effective methods for expressing fluorescent biosensors In the rodent kidney and to provide these methods to end-user investigators in the form of fully characterized probes and detailed protocols for the use of these probes and for the development of new probes. These probes will provide renal researchers with powerful new tools that will enable them to conduct novel intravital microscopy studies addressing fundamental issues of renal physiology, cell biology and pathophysiology.

Public Health Relevance

The Indiana O'Brien Center is founded upon the mission of developing and implementing methods of microscopy that provide unique and powerful insights into renal function and dysfunction. The Probe Delivery Core will play a critical role in this mission, developing techniques and reagents to support the delivery and expression of novel biosensors that will support unique microscopy studies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
2P30DK079312-06
Application #
8433636
Study Section
Special Emphasis Panel (ZDK1-GRB-6 (M1))
Project Start
Project End
Budget Start
2012-08-20
Budget End
2013-06-30
Support Year
6
Fiscal Year
2012
Total Cost
$190,900
Indirect Cost
$14,000
Name
Indiana University-Purdue University at Indianapolis
Department
Type
DUNS #
603007902
City
Indianapolis
State
IN
Country
United States
Zip Code
46202
Winfree, Seth; Khan, Shehnaz; Micanovic, Radmila et al. (2017) Quantitative Three-Dimensional Tissue Cytometry to Study Kidney Tissue and Resident Immune Cells. J Am Soc Nephrol 28:2108-2118
Hato, Takashi; Winfree, Seth; Dagher, Pierre C (2017) Intravital imaging of the kidney. Methods 128:33-39
Molitoris, Bruce A (2017) Rethinking CKD Evaluation: Should We Be Quantifying Basal or Stimulated GFR to Maximize Precision and Sensitivity? Am J Kidney Dis 69:675-683
Rhodes, George J (2017) Surgical preparation of rats and mice for intravital microscopic imaging of abdominal organs. Methods 128:129-138
Endres, Bradley T; Sandoval, Ruben M; Rhodes, George J et al. (2017) Intravital imaging of the kidney in a rat model of salt-sensitive hypertension. Am J Physiol Renal Physiol 313:F163-F173
Dube, Shataakshi; Matam, Tejasvi; Yen, Jessica et al. (2017) Endothelial STAT3 Modulates Protective Mechanisms in a Mouse Ischemia-Reperfusion Model of Acute Kidney Injury. J Immunol Res 2017:4609502
Hato, Takashi; Winfree, Seth; Day, Richard et al. (2017) Two-Photon Intravital Fluorescence Lifetime Imaging of the Kidney Reveals Cell-Type Specific Metabolic Signatures. J Am Soc Nephrol 28:2420-2430
Collett, Jason A; Corridon, Peter R; Mehrotra, Purvi et al. (2017) Hydrodynamic Isotonic Fluid Delivery Ameliorates Moderate-to-Severe Ischemia-Reperfusion Injury in Rat Kidneys. J Am Soc Nephrol 28:2081-2092
Winfree, Seth; Hato, Takashi; Day, Richard N (2017) Intravital microscopy of biosensor activities and intrinsic metabolic states. Methods 128:95-104
Winfree, Seth; Ferkowicz, Michael J; Dagher, Pierre C et al. (2017) Large-scale 3-dimensional quantitative imaging of tissues: state-of-the-art and translational implications. Transl Res 189:1-12

Showing the most recent 10 out of 81 publications