The Digital Image Analysis core will complement the Intravital Multi-photon Microscopy Core by providing digital image processing services for O'Brien investigators to support data exploration and quantification. The Core will provide analysis services, will train investigators in the use of image analysis software and will develop new tools to enhance and extend the visualization and quantification of deep tissue microscopy images. In particular the Digital Image Analysis core will develop and distribute user-friendly software that will provide effective, efficient tools for quantifying 2-dimensional and 3-dimensional fluorescence microscopy images. These services will be made available remotely through the dissemination of free, flexible image analysis software and an interactive televisualization system. The Digital Image Analysis Core will provide researchers with powerful new tools enabling them to conduct novel studies addressing fundamental issues of renal physiology, cell biology and pathophysiology

Public Health Relevance

The Indiana OBrien Center Is founded upon the mission of developing and implementing methods of microscopy that provide unique and powerful insights into renal function and dysfunction. The Digital Image Analysis Core plays a critical role in this mission, developing critical tools to explore and quantify microscopy studies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
2P30DK079312-06
Application #
8433638
Study Section
Special Emphasis Panel (ZDK1-GRB-6 (M1))
Project Start
Project End
Budget Start
2012-08-20
Budget End
2013-06-30
Support Year
6
Fiscal Year
2012
Total Cost
$211,763
Indirect Cost
$60,846
Name
Indiana University-Purdue University at Indianapolis
Department
Type
DUNS #
603007902
City
Indianapolis
State
IN
Country
United States
Zip Code
46202
Winfree, Seth; Khan, Shehnaz; Micanovic, Radmila et al. (2017) Quantitative Three-Dimensional Tissue Cytometry to Study Kidney Tissue and Resident Immune Cells. J Am Soc Nephrol 28:2108-2118
Hato, Takashi; Winfree, Seth; Dagher, Pierre C (2017) Intravital imaging of the kidney. Methods 128:33-39
Molitoris, Bruce A (2017) Rethinking CKD Evaluation: Should We Be Quantifying Basal or Stimulated GFR to Maximize Precision and Sensitivity? Am J Kidney Dis 69:675-683
Rhodes, George J (2017) Surgical preparation of rats and mice for intravital microscopic imaging of abdominal organs. Methods 128:129-138
Endres, Bradley T; Sandoval, Ruben M; Rhodes, George J et al. (2017) Intravital imaging of the kidney in a rat model of salt-sensitive hypertension. Am J Physiol Renal Physiol 313:F163-F173
Dube, Shataakshi; Matam, Tejasvi; Yen, Jessica et al. (2017) Endothelial STAT3 Modulates Protective Mechanisms in a Mouse Ischemia-Reperfusion Model of Acute Kidney Injury. J Immunol Res 2017:4609502
Hato, Takashi; Winfree, Seth; Day, Richard et al. (2017) Two-Photon Intravital Fluorescence Lifetime Imaging of the Kidney Reveals Cell-Type Specific Metabolic Signatures. J Am Soc Nephrol 28:2420-2430
Collett, Jason A; Corridon, Peter R; Mehrotra, Purvi et al. (2017) Hydrodynamic Isotonic Fluid Delivery Ameliorates Moderate-to-Severe Ischemia-Reperfusion Injury in Rat Kidneys. J Am Soc Nephrol 28:2081-2092
Winfree, Seth; Hato, Takashi; Day, Richard N (2017) Intravital microscopy of biosensor activities and intrinsic metabolic states. Methods 128:95-104
Winfree, Seth; Ferkowicz, Michael J; Dagher, Pierre C et al. (2017) Large-scale 3-dimensional quantitative imaging of tissues: state-of-the-art and translational implications. Transl Res 189:1-12

Showing the most recent 10 out of 81 publications