The Digital Image Analysis core will complement the Intravital Multi-photon Microscopy Core by providing digital image processing services for O'Brien investigators to support data exploration and quantification. The Core will provide analysis services, will train investigators in the use of image analysis software and will develop new tools to enhance and extend the visualization and quantification of deep tissue microscopy images. In particular the Digital Image Analysis core will develop and distribute user-friendly software that will provide effective, efficient tools for quantifying 2-dimensional and 3-dimensional fluorescence microscopy images. These services will be made available remotely through the dissemination of free, flexible image analysis software and an interactive televisualization system. The Digital Image Analysis Core will provide researchers with powerful new tools enabling them to conduct novel studies addressing fundamental issues of renal physiology, cell biology and pathophysiology

Public Health Relevance

The Indiana OBrien Center Is founded upon the mission of developing and implementing methods of microscopy that provide unique and powerful insights into renal function and dysfunction. The Digital Image Analysis Core plays a critical role in this mission, developing critical tools to explore and quantify microscopy studies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK079312-07
Application #
8534774
Study Section
Special Emphasis Panel (ZDK1-GRB-6)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
7
Fiscal Year
2013
Total Cost
$197,763
Indirect Cost
$46,846
Name
Indiana University-Purdue University at Indianapolis
Department
Type
DUNS #
603007902
City
Indianapolis
State
IN
Country
United States
Zip Code
46202
Atkinson, Simon J (2016) A wandering path toward prevention for acute kidney injury. J Clin Invest 126:1640-2
Chen, Z; Wan, X; Hou, Q et al. (2016) GADD45B mediates podocyte injury in zebrafish by activating the ROS-GADD45B-p38 pathway. Cell Death Dis 7:e2068
Wagner, Mark C; Campos-Bilderback, Silvia B; Chowdhury, Mahboob et al. (2016) Proximal Tubules Have the Capacity to Regulate Uptake of Albumin. J Am Soc Nephrol 27:482-94
de Almeida, Rita M C; Clendenon, Sherry G; Richards, William G et al. (2016) Transcriptome analysis reveals manifold mechanisms of cyst development in ADPKD. Hum Genomics 10:37
Molitoris, Bruce A; Reilly, Erinn S (2016) Quantifying Glomerular Filtration Rates in Acute Kidney Injury: A Requirement for Translational Success. Semin Nephrol 36:31-41
Hato, Takashi; Sandoval, Ruben; Dagher, Pierre C (2015) The caspase 3 sensor Phiphilux G2D2 is activated non-specifically in S1 renal proximal tubules. Intravital 4:
Tao, Wen; Rubart, Michael; Ryan, Jennifer et al. (2015) A practical method for monitoring FRET-based biosensors in living animals using two-photon microscopy. Am J Physiol Cell Physiol 309:C724-35
Hato, Takashi; Dagher, Pierre C (2015) How the Innate Immune System Senses Trouble and Causes Trouble. Clin J Am Soc Nephrol 10:1459-69
El-Achkar, Tarek M; Dagher, Pierre C (2015) Tubular cross talk in acute kidney injury: a story of sense and sensibility. Am J Physiol Renal Physiol 308:F1317-23
Hato, Takashi; Winfree, Seth; Kalakeche, Rabih et al. (2015) The macrophage mediates the renoprotective effects of endotoxin preconditioning. J Am Soc Nephrol 26:1347-62

Showing the most recent 10 out of 68 publications