The long-term objective of the Mayo Center for Cell Signaling in Gastroenterology (MCCSG) is to understand the signaling pathways that control the function of gastrointestinal cells in health and disease. The Center members are organized into three Mechanistic Research Theme interest groups: i.) signal transduction;ii.) membrane receptors and ion channels;and, iii.) genetics and gene regulation. Each Mechanistic Research Theme represents an important area of signaling research that is an area of tremendous strength at Mayo Clinic. Our global hypothesis is that rapid advances in clinical care for patients with digestive diseases requires strong support of basic science research to identify disease mechanisms and intermediate biomarkers for digestive diseases, and that these basic science discoveries will generate translational research opportunities resulting in clinical trials. The Center goals are to promote and enhance cell signaling research by: i.) fostering collaborative, multidisciplinary research both by expanding the technical and collaborative capabilities of established Gl scientists and by attracting investigators from other disciplines;ii.) developing and implementing a robust and diverse Scientific Enrichment Program that includes seminars, workshops, symposia, a visiting faculty program, mini-sabbaticals, and web-based curricula;iii.) identifying and nurturing development of new Gl investigators via a rigorously peer-reviewed, widely publicized Pilot and Feasibility Program;and, iv.) promoting synergistic interaction between the signaling research base and the clinical research expertise of Mayo Gl investigators through activities that support signaling-related research and promote translation of basic science discoveries into clinical research. The Center seeks to support the three Mechanistic Research Themes by creating a supportive infrastructure that makes technologies more easily accessible, provides technical expertise to members from experts in a particular technology, uses existing resources efficiently, and develops novel methodologies through three linked biomedical Center Cores. The proposed biomedical cores are the: i.) Clinical Core;ii.) Genetics Core;and, iii.) Optical Microscopy Core. These Cores were developed by Center leadership in response to detailed and thoughtful analysis of barriers to cell signaling research and Center member surveys. The Core's specific goals are to: i.) develop and/or exploit advanced methods in biospecimen acquisition, processing, and annotation to enhance biospecimen collection and accessibility for Center investigators;ii.) enhance Center member's access to and implementation of current and emerging key genetic technologies;and, iii.) provide Center members with reliable access to state-of-the-art microscopic technology and expertise that will facilitate investigations of the pathogenesis of gastrointestinal and liver diseases.

Public Health Relevance

Gastrointestinal diseases and their complications have a significant affect on public health and health care utilization costs. Research supported by this Center grant, has the potential to improve care of patients afflicted with gastrointestinal disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK084567-04
Application #
8309305
Study Section
Special Emphasis Panel (ZDK1-GRB-8 (M1))
Program Officer
Podskalny, Judith M,
Project Start
2009-09-01
Project End
2014-08-31
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
4
Fiscal Year
2012
Total Cost
$1,133,250
Indirect Cost
$383,250
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Strege, Peter R; Mazzone, Amelia; Bernard, Cheryl E et al. (2018) Irritable bowel syndrome patients have SCN5A channelopathies that lead to decreased NaV1.5 current and mechanosensitivity. Am J Physiol Gastrointest Liver Physiol 314:G494-G503
Rizvi, Sumera; Eaton, John; Yang, Ju Dong et al. (2018) Emerging Technologies for the Diagnosis of Perihilar Cholangiocarcinoma. Semin Liver Dis 38:160-169
Bianco, F; Eisenman, S T; Colmenares Aguilar, M G et al. (2018) Expression of RAD21 immunoreactivity in myenteric neurons of the human and mouse small intestine. Neurogastroenterol Motil 30:e13429
Druliner, Brooke R; Ruan, Xiaoyang; Sicotte, Hugues et al. (2018) Early genetic aberrations in patients with sporadic colorectal cancer. Mol Carcinog 57:114-124
Masyuk, Tatyana V; Masyuk, Anatoliy I; LaRusso, Nicholas F (2018) Polycystic liver disease: The interplay of genes causative for hepatic and renal cystogenesis. Hepatology 67:2462-2464
Smoot, Rory L; Werneburg, Nathan W; Sugihara, Takaaki et al. (2018) Platelet-derived growth factor regulates YAP transcriptional activity via Src family kinase dependent tyrosine phosphorylation. J Cell Biochem 119:824-836
Hale, Vanessa L; Jeraldo, Patricio; Mundy, Michael et al. (2018) Synthesis of multi-omic data and community metabolic models reveals insights into the role of hydrogen sulfide in colon cancer. Methods 149:59-68
Alcaino, Constanza; Knutson, Kaitlyn R; Treichel, Anthony J et al. (2018) A population of gut epithelial enterochromaffin cells is mechanosensitive and requires Piezo2 to convert force into serotonin release. Proc Natl Acad Sci U S A 115:E7632-E7641
Rizvi, Sumera; Gores, Gregory J (2018) Fibroblast Growth Factor Receptor Inhibition for Cholangiocarcinoma: Looking Through a Door Half-Opened. Hepatology 68:2428-2430
Lorenzo Pisarello, Maria; Masyuk, Tatyana V; Gradilone, Sergio A et al. (2018) Combination of a Histone Deacetylase 6 Inhibitor and a Somatostatin Receptor Agonist Synergistically Reduces Hepatorenal Cystogenesis in an Animal Model of Polycystic Liver Disease. Am J Pathol 188:981-994

Showing the most recent 10 out of 537 publications