The objective of the C-SiG Optical Microscopy Core, is to be a state-of-the-art, user-friendly service that connects investigators with the many optical technologies and applications at a reasonable cost. Under the direction of Dr. Mark McNiven, a well-established cell biologist, the Core integrates existing resources from the Mayo Microscopy and Cell Analysis Core and from individual investigators in the Division of Gastroenterology and Hepatology (GIH) as well as providing additional new technologies not previously available.
The Specific Aims of this core are three-fold. First, to provide reliable, accessible, state-of-the-art microscopic technology to all C-SiG members that will facilitate their study of Gl cellular signaling cascades. Second, to educate and train C-SiG members;in the use of both basic and sophisticated cellular imaging methods. Emphasis is placed on providing technical instruction as well as educating faculty on how such approaches can expand the scope and breadth of their scientific programs. Third, to develop and apply state-of-the-art optical imaging technologies, including fluorescent probes and biosensors, to study Gl tissues and/or cells. The most popular Core service is access to the well-maintained C-SiG Confocal Microscopes. The Core also provides instruction, technical advice, data interpretation, and development of novel, innovative optical approaches to the study of signaling pathways in Gl cells and tissues. These services cover a wide range of topics including: real-time computer/video imaging of live cells;confocal microscopy coupled with computer-based 3-D image reconstruction;Fluorescence Resonance Energy Transfer (FRET) applications to measure dynamic protein-protein interactions;Fluorescence Recovery After Photobleaching (FRAP) that allows the quantitation of protein recruitment/turnover;Fluorescence Loss in Photobleaching (FLIP);microinjection of living cells;expression and use of fluorescence-based bioprobes that facilitates the study and localization of specific signaling molecules including both proteins and lipids;the development and application of specific photo-activatable caged-compounds that allow a precise temporal and spatial activation of desired signaling molecules in live cells;Total internal reflection (TIRF) microscopy; multiphoton microscopy, and super-resolution microscopy. Core services have been used by 58% of CSiG members and supported 106 publications.

Public Health Relevance

Gastrointestinal diseases and their complications have a significant effect on public health and health care utilization costs. The C-SiG Optical Microscopy Core supports scientific advancements of C-SiG members that are critically important for furthering understanding of the mechanisms that underlie digestive diseases, which can lead to practical applications for the diagnosis, prevention, monitoring and treatment of human disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
2P30DK084567-06
Application #
8737722
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
6
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
City
Rochester
State
MN
Country
United States
Zip Code
55905
Mouchli, Mohamad A; Singh, Siddharth; Boardman, Lisa et al. (2018) Natural History of Established and De Novo Inflammatory Bowel Disease After Liver Transplantation for Primary Sclerosing Cholangitis. Inflamm Bowel Dis 24:1074-1081
Paradise, Brooke D; Barham, Whitney; Fernandez-Zapico, Martín E (2018) Targeting Epigenetic Aberrations in Pancreatic Cancer, a New Path to Improve Patient Outcomes? Cancers (Basel) 10:
Banales, Jesus M; Marzioni, Marco; LaRusso, Nicholas F et al. (2018) Cholangiocytes in health and disease: From basic science to novel treatments. Biochim Biophys Acta Mol Basis Dis 1864:1217-1219
Tarragó, Mariana G; Chini, Claudia C S; Kanamori, Karina S et al. (2018) A Potent and Specific CD38 Inhibitor Ameliorates Age-Related Metabolic Dysfunction by Reversing Tissue NAD+ Decline. Cell Metab 27:1081-1095.e10
Kim, Minsoo; Druliner, Brooke R; Vasmatzis, Nikolaos et al. (2018) Inferring modes of evolution from colorectal cancer with residual polyp of origin. Oncotarget 9:6780-6792
Druliner, Brooke R; Wang, Panwen; Bae, Taejeong et al. (2018) Molecular characterization of colorectal adenomas with and without malignancy reveals distinguishing genome, transcriptome and methylome alterations. Sci Rep 8:3161
Mansini, Adrian P; Lorenzo Pisarello, Maria J; Thelen, Kristen M et al. (2018) MicroRNA (miR)-433 and miR-22 dysregulations induce histone-deacetylase-6 overexpression and ciliary loss in cholangiocarcinoma. Hepatology 68:561-573
Moncsek, Anja; Al-Suraih, Mohammed S; Trussoni, Christy E et al. (2018) Targeting senescent cholangiocytes and activated fibroblasts with B-cell lymphoma-extra large inhibitors ameliorates fibrosis in multidrug resistance 2 gene knockout (Mdr2-/- ) mice. Hepatology 67:247-259
Allen, Alina M; Shah, Vijay H; Therneau, Terry M et al. (2018) The role of 3D-MRE in the diagnosis of NASH in obese patients undergoing bariatric surgery. Hepatology :
Dhanasekaran, Renumathy; Nault, Jean-Charles; Roberts, Lewis R et al. (2018) Genomic Medicine and Implications for Hepatocellular Carcinoma Prevention and Therapy. Gastroenterology :

Showing the most recent 10 out of 537 publications