The C-SiG Genetics and Model Systems Core facilitates access to genetic tools and model systems for digestive disease-related research projects. Genetic manipulation is a critical approach from biological modeling to establishing and testing critical molecular signaling pathways in both normal and clinically relevant disease states. Genetic tools are extremely dynamic, with new technologies emerging every year. The Core provides current, emerging, and future genetic technologies while facilitating access to a full range of model systems including mouse, zebrafish, and rat. The Core Director, Dr. Stephen Ekker, is a well-established geneticist with extensive expertise using a variety of model systems. The Core has focused our original Specific Aims on tangible deliverables to better serve the C-SiG membership. Thus, the current SPECIFIC AIMS of the C-SiG Genetics and Model Systems Core are three-fold. First, to accelerate research by connecting and educating members to genetics and model systems tools. Second, to deliver new genetics and model systems tools/technologies that are needed by C-SiG members. Third, to establish cutting-edge genetic tools for genome editing including zinc finger nucleases (ZFNs), TALENs, Cas9 Custom Restriction Enzyme System (CRlSPRs) and future locus-specific genome editing tools that can be applied to model organism development including zebrafish, rats, mice and Drosophila.
These aims will be accomplished by: i) Directly generating custom reagents including transposon clones, BAC clones, and TALENs for top-priority projects;ii) Providing education through core-sponsored seminars, Web site, and presentations to C-SiG Member laboratories;iii) Providing consultative services by connecting C-SiG members to genetics tools and institutional infrastructures directly and through a novel online reagent hub; and, iv) Developing model experimental systems, including zebrafish and genetically manipulated mice, flies, and rats, directly and by facilitating internal and external collaborative partnerships that benefit C-SiG members. Tiie C-SiG Genetics and Model Systems Core services have been used by 55% of Center members and supported 18 publications.

Public Health Relevance

Gastrointestinal diseases and their complications have a significant effect on public health and health care utilization costs. The C-SiG Genetics and Model Systems Core supports scientific advancements of C-SiG members that are critically important for furthering understanding of the mechanisms that underlie digestive diseases, which can lead to practical applications for the diagnosis, prevention, monitoring and treatment of human disease.

Agency
National Institute of Health (NIH)
Type
Center Core Grants (P30)
Project #
2P30DK084567-06
Application #
8737731
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
Budget End
Support Year
6
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
City
Rochester
State
MN
Country
United States
Zip Code
55905
Ni, Jun; Wangensteen, Kirk J; Nelsen, David et al. (2016) Active recombinant Tol2 transposase for gene transfer and gene discovery applications. Mob DNA 7:6
Landry, Greg M; Hirata, Taku; Anderson, Jacob B et al. (2016) Sulfate and thiosulfate inhibit oxalate transport via a dPrestin (Slc26a6)-dependent mechanism in an insect model of calcium oxalate nephrolithiasis. Am J Physiol Renal Physiol 310:F152-9
Ma, Alvin C; McNulty, Melissa S; Poshusta, Tanya L et al. (2016) FusX: A Rapid One-Step Transcription Activator-Like Effector Assembly System for Genome Science. Hum Gene Ther 27:451-63
Khanna, S; Montassier, E; Schmidt, B et al. (2016) Gut microbiome predictors of treatment response and recurrence in primary Clostridium difficile infection. Aliment Pharmacol Ther 44:715-27
Druliner, Brooke R; Rashtak, Shahrooz; Ruan, Xiaoyang et al. (2016) Colorectal Cancer with Residual Polyp of Origin: A Model of Malignant Transformation. Transl Oncol 9:280-6
Tomita, Kyoko; Freeman, Brittany L; Bronk, Steven F et al. (2016) CXCL10-Mediates Macrophage, but not Other Innate Immune Cells-Associated Inflammation in Murine Nonalcoholic Steatohepatitis. Sci Rep 6:28786
Kawakami, Hisato; Huang, Shengbing; Pal, Krishnendu et al. (2016) Mutant BRAF Upregulates MCL-1 to Confer Apoptosis Resistance that Is Reversed by MCL-1 Antagonism and Cobimetinib in Colorectal Cancer. Mol Cancer Ther 15:3015-3027
Tabibian, James H; Varghese, Cyril; LaRusso, Nicholas F et al. (2016) The enteric microbiome in hepatobiliary health and disease. Liver Int 36:480-7
Verma, Vikas K; Li, Haiyang; Wang, Ruisi et al. (2016) Alcohol stimulates macrophage activation through caspase-dependent hepatocyte derived release of CD40L containing extracellular vesicles. J Hepatol 64:651-60
Ding, Xiwei; Chaiteerakij, Roongruedee; Moser, Catherine D et al. (2016) Antitumor effect of the novel sphingosine kinase 2 inhibitor ABC294640 is enhanced by inhibition of autophagy and by sorafenib in human cholangiocarcinoma cells. Oncotarget 7:20080-92

Showing the most recent 10 out of 399 publications