The long-term mission of the Mayo Translational PKD Center (MTPC) is to develop Core facilities to support existing and stimulate new PKD research by Mayo and non-Mayo investigators and to facilitate the translation of basic research breakthroughs into improvements in clinical practice. The proposed Center Cores (Molecular Genetics and Proteomics Core, Model Systems Core, and Human Imaging Core) build on the existing strengths of the PKD investigators at Mayo. The Molecular Genetics and Proteomics Core will offer mutation screening services of PKD1 and PKD2 by direct sequencing to characterize large ADPKD populations, especially those involved in clinical trials, and to characterize patient-derived cell lines to increase their value to the PKD community;will facilitate the study of atypical ADPKD patients and include sample collection, mutation screening (including genes beyond PKD1 and PKD2), and linkage analysis, where appropriate;will complement the genetic studies by facilitating the collection, fractionation, and validation of urine samples for future proteomic and RNA expression analysis. These services will be augmented by developmental projects. The Model Svstems Core will make available PKD model systems (C. elegans, zebrafish, and rodent) and a wide range of imaging and physiology technologies to evaluate potential therapies and ascertain the function of PKD proteins and will implement a strong developmental program. The Human Imaging Core will facilitate the transmission, collection, and storage of imaging data utilized in translational PKD research;provide state of the art analytic tools for semi-automated volumetric analysis of polycystic kidneys and liver and for functional assessment of the kidneys and heart including measurements of renal blood flow;and develop enhanced or new methodologies that facilitate the translation of basic PKD research discoveries into the clinical practice. The combination of these Core facilities will strongly i.) Foster collaborative, multidisciplinary, translational PKD research and expand the technical and collaborative capabilities of established Mayo and non-Mayo PKD investigators;ii) Attract talented investigators from other disciplines into PKD research;iii.) Speed assays of potential treatments for PKD and facilitate their introduction into the clinical arena;iii.) Promote synergistic interaction between the Research PKD Base and the clinical research expertise of Mayo PKD investigators;iv.) Develop and implement a robust, diverse Scientific Enrichment Program that includes seminars, workshops, symposia, a visiting faculty program, and Web-based curricula;and, v.) Identify and nurture development of new PKD investigators via a rigorously peer-reviewed, widely publicized Pilot and Feasibility Program. To create and foster such an interactive and productive environment, the Center will use Mayo's unique strengths, which include excellence in PKD-related research, large and well-characterized patient populations, outstanding population sciences, tradition in clinical trials, and institutional resources. The Center's global efforts will be enhanced by substantial institutional resources that include a Center for Translational Science Activities (CTSA) grant (with a NIH Training Grant in Kidney Diseases), and complementary institutional cores that include the Genomics Resource Center, Proteomics Research Center, Department of Comparative Medicine, Zebrafish Core Facility, Transgenic and Gene Knockout Core Facility, Medical Imaging Informatics Innovation Center, Center for Advanced Imaging Research, Biomedical Imaging Research Laboratory, CT Clinical Innovation Center, and Gonda Vascular Center. Ultimately, the Center grant will enhance and expand the collaborative intersections and critical mass of scientists addressing PKD research. Public Health Relevance: Polycystic kidney disease (PKD) and its complications have a significant effect on public health and health care utilization costs. Research supported by the Center grant has the potential to improve care of patients who have PKD and related disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
1P30DK090728-01
Application #
8044416
Study Section
Special Emphasis Panel (ZDK1-GRB-S (O1))
Program Officer
Flessner, Michael Francis
Project Start
2010-09-30
Project End
2015-06-30
Budget Start
2010-09-30
Budget End
2011-06-30
Support Year
1
Fiscal Year
2010
Total Cost
$1,182,745
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Ata, Hirotaka; Ekstrom, Thomas L; Martínez-Gálvez, Gabriel et al. (2018) Robust activation of microhomology-mediated end joining for precision gene editing applications. PLoS Genet 14:e1007652
Chebib, Fouad T; Perrone, Ronald D; Chapman, Arlene B et al. (2018) A Practical Guide for Treatment of Rapidly Progressive ADPKD with Tolvaptan. J Am Soc Nephrol 29:2458-2470
Yu, Alan S L; Shen, Chengli; Landsittel, Douglas P et al. (2018) Baseline total kidney volume and the rate of kidney growth are associated with chronic kidney disease progression in Autosomal Dominant Polycystic Kidney Disease. Kidney Int 93:691-699
Masyuk, Tatyana V; Masyuk, Anatoliy I; LaRusso, Nicholas F (2018) Polycystic liver disease: The interplay of genes causative for hepatic and renal cystogenesis. Hepatology 67:2462-2464
Cornec-Le Gall, Emilie; Olson, Rory J; Besse, Whitney et al. (2018) Monoallelic Mutations to DNAJB11 Cause Atypical Autosomal-Dominant Polycystic Kidney Disease. Am J Hum Genet 102:832-844
He, Kai; Ma, Xiaoyu; Xu, Tao et al. (2018) Axoneme polyglutamylation regulated by Joubert syndrome protein ARL13B controls ciliary targeting of signaling molecules. Nat Commun 9:3310
Idowu, Jessica; Home, Trisha; Patel, Nisha et al. (2018) Aberrant Regulation of Notch3 Signaling Pathway in Polycystic Kidney Disease. Sci Rep 8:3340
Nowak, Kristen L; You, Zhiying; Gitomer, Berenice et al. (2018) Overweight and Obesity Are Predictors of Progression in Early Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol 29:571-578
Brosnahan, Godela M; Abebe, Kaleab Z; Moore, Charity G et al. (2018) Patterns of Kidney Function Decline in Autosomal Dominant Polycystic Kidney Disease: A Post Hoc Analysis From the HALT-PKD Trials. Am J Kidney Dis 71:666-676
Besse, Whitney; Choi, Jungmin; Ahram, Dina et al. (2018) A noncoding variant in GANAB explains isolated polycystic liver disease (PCLD) in a large family. Hum Mutat 39:378-382

Showing the most recent 10 out of 192 publications