This Core provides cutting edge tools that allow investigators to monitor cellular and molecular changes that occur during normal hematopoiesis or in pathological states associated with bone marrow failure (BMF), nonmalignant myelodysplastic syndromes or defects in erythropoiesis/megakaryopoiesis, addressing the three foci of this application as detailed in the OVERALL DESCRIPTION. There is a clear need for services to identify and analyze in a rapid, high throughput fashion drugs that influence hematopoietic cell commitment to various lineages and to develop miniaturized systems for studies of stromal/niche environments. Dr. Diamond is the director of the University of Pennsylvania (UPENN) PCMD, which he established as a Core Facility in 2005 (see BIOSKETCH). Dr. Diamond has 20 years of experience with numerous projects in endothelial biology, blood biology, and blood systems biology. He already has been working with Drs. Poncz, French and Gadue on niche effects on thrombopoiesis from mature megakaryocytes. He will be overall Director and Director of SubCore C-1. Dr. Baldwin will direct the analysis of RNA and DNA changes in cells during hematopoiesis. He has 11 years of industrial and academic experience in microarray assays, serves on the Neuroscience Microarray Consortium Advisory Panel for the NIH, co-chairs the MicroArray Research Group of the Association of Biomolecular Resource Facilities, and interacts regularly with core directors on a national level (see BIOSKETCH). Dr. Baldwin founded the Penn Microarray Facility in 2001, was appointed Director of the Molecular Diagnosis and Genotyping Facility in 2005, and has merged the two laboratories to create the Molecular Profiling Facility. He has conducted previous genomic profiling projects with Drs. Weiss, Blobel, Carroll, Diamond, Discher, Gewirtz, June and Pear on efforts directly relevant to this P30. We have combined components of the two UPENN cores run by Drs. Diamond and Baldwin to develop a single core for this P30 to incorporate state-of-the-art resources on our campus that will unite our abilities to analyze normal, pathologic and manipulated hematopoietic cells. SubCore C-1 offers high-throughput microscale screening for compounds that affect various aspects of hematopoietic cell biology, including lineage commitment (either from embryonic stem (ES) cells or more differentiated progenitors), survival, proliferation or maturation into mature blood cells. SubCore C-2 will analyze changes that occur in the RNA expression profiles and epigenetic DNA marks in these cells either de novo or after modifications using Core E. We believe that these two SubCores reflect a common theme of rapidly analyzing cells and cellular changes using complex methodologies with significant investment in rapidly changing equipment and technologies. Core C is committed to bringing the most current and innovative technologies to the P30 investigators, while providing campus-wide standardization of services to support cooperative efforts by different investigators with complementary interests and expertise. Our goal is to provide significant labor-intensive service and guidance at very competitive pricing, supported in part by efficiency of utilization and by UPENN financial support.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-G)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Children's Hospital of Philadelphia
United States
Zip Code
Wunderlich, Mark; Brooks, Ryan A; Panchal, Rushi et al. (2014) OKT3 prevents xenogeneic GVHD and allows reliable xenograft initiation from unfractionated human hematopoietic tissues. Blood 123:e134-44
Sullivan, Spencer K; Mills, Jason A; Koukouritaki, Sevasti B et al. (2014) High-level transgene expression in induced pluripotent stem cell-derived megakaryocytes: correction of Glanzmann thrombasthenia. Blood 123:753-7
Kamat, Viraj; Paluru, Prasuna; Myint, Melissa et al. (2014) MicroRNA screen of human embryonic stem cell differentiation reveals miR-105 as an enhancer of megakaryopoiesis from adult CD34+ cells. Stem Cells 32:1337-46
Thom, Christopher S; Traxler, Elizabeth A; Khandros, Eugene et al. (2014) Trim58 degrades Dynein and regulates terminal erythropoiesis. Dev Cell 30:688-700
Paralkar, Vikram R; Mishra, Tejaswini; Luan, Jing et al. (2014) Lineage and species-specific long noncoding RNAs during erythro-megakaryocytic development. Blood 123:1927-37
Shin, Jae-Won; Buxboim, Amnon; Spinler, Kyle R et al. (2014) Contractile forces sustain and polarize hematopoiesis from stem and progenitor cells. Cell Stem Cell 14:81-93
Paluru, Prasuna; Hudock, Kristin M; Cheng, Xin et al. (2014) The negative impact of Wnt signaling on megakaryocyte and primitive erythroid progenitors derived from human embryonic stem cells. Stem Cell Res 12:441-51
Tiyaboonchai, Amita; Mac, Helen; Shamsedeen, Razveen et al. (2014) Utilization of the AAVS1 safe harbor locus for hematopoietic specific transgene expression and gene knockdown in human ES cells. Stem Cell Res 12:630-7
Crispino, John D; Weiss, Mitchell J (2014) Erythro-megakaryocytic transcription factors associated with hereditary anemia. Blood 123:3080-8
Buxboim, Amnon; Swift, Joe; Irianto, Jerome et al. (2014) Matrix elasticity regulates lamin-A,C phosphorylation and turnover with feedback to actomyosin. Curr Biol 24:1909-17

Showing the most recent 10 out of 21 publications