Chronic kidney disease (CKD) is associated with a marked increase in risk for cardiovascular disease (CVD), such that patients with CKD are more likely to die from CVD than to progress to end-stage renal disease. Hypertension (HTN) amplifies risk for CVD and affects more than 1 billion people worldwide. However, the causes of HTN cannot be determined in most patients and the mechanisms underlying the complex interactions among the kidney, HTN and cardiovascular disease and subsequent risk for mortality are not clear. We suggest that precise definition of these mechanisms will require multi-disciplinary teams with expertise in renal and cardiovascular systems. Accordingly, our objective is to provide a panel of sophisticated tools to support and facilitate multi-disciplinary, basic discovery research in animal models on the unique links relating the kidney, cardiovascular disease and HTN. The Core is configured to provide access to a range of experimental models of kidney, heart and vascular diseases, and Core personnel have comprehensive expertise in utilizing mouse models of CKD, CVD, and HTN, as well as functional kidney and cardiovascular screens in non-mammalian models. The Core will serve kidney or cardiovascular investigators who may be working in isolation to raise their awareness of the clinical impact of the heart-kidney axis and to provide access to models and techniques that can entice them to expand their efforts into our broader area of thematic interest. We will provide comprehensive phenotyping services for kidney, blood pressure and other cardiovascular functions. The scope of the Core will be Regional, National and International. Core staff will assist in experimental design as well as data collection and analysis. Capabilities of the Core will also be useful for determining functional relevance of genetic variants discovered in studies based in the Renal Genomics Core as well as providing preliminary data for human studies in the Clinical and Translational Core. The Animal Models Core has four specific aims: (1) to provide access to mouse models of CKD, HTN, and CVD;(2) to provide state-of-the-art kidney and cardiovascular phenotyping in mice;(3) to generate models of kidney cross-transplantation for distinguishing renal and systemic contributions to physiologic, metabolic and/or immunological functions in mice;and (4) to provide rapid screens in zebrafish for genetic variants with functional effects in kidney and/or cardiovascular system.

Public Health Relevance

The Animal Core will offer both mammalian and non-mammalian models and phenotyping services to investigators studying the mechanisms connecting hypertension, kidney disease and heart disease. The capabilities of the Animal Core will also align with the genetic and human studies offered by the Center's other Cores.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK096493-02
Application #
8529524
Study Section
Special Emphasis Panel (ZDK1-GRB-6)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
2
Fiscal Year
2013
Total Cost
$323,803
Indirect Cost
$117,559
Name
Duke University
Department
Type
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Zullig, Leah L; McCant, Felicia; Silberberg, Mina et al. (2018) Changing CHANGE: adaptations of an evidence-based telehealth cardiovascular disease risk reduction intervention. Transl Behav Med 8:225-232
Stanifer, John W; Landerman, Lawrence; Pieper, Carl F et al. (2018) Relations of established aging biomarkers (IL-6, D-dimer, s-VCAM) to glomerular filtration rate and mortality in community-dwelling elderly adults. Clin Kidney J 11:377-382
Wyatt, Christina M; Crowley, Steven D (2018) Intersection of salt- and immune-mediated mechanisms of hypertension in the gut microbiome. Kidney Int 93:532-534
Scialla, Julia J; Brown, Landon; Gurley, Susan et al. (2018) Metabolic Changes with Base-Loading in CKD. Clin J Am Soc Nephrol 13:1244-1246
Adeyemo, Adebowale; Esezobor, Christopher; Solarin, Adaobi et al. (2018) HLA-DQA1 and APOL1 as Risk Loci for Childhood-Onset Steroid-Sensitive and Steroid-Resistant Nephrotic Syndrome. Am J Kidney Dis 71:399-406
Gurley, Susan B; Ghosh, Sujoy; Johnson, Stacy A et al. (2018) Inflammation and Immunity Pathways Regulate Genetic Susceptibility to Diabetic Nephropathy. Diabetes 67:2096-2106
Chatterjee, Ranee; Davenport, Clemontina A; Raffield, Laura M et al. (2018) KCNJ11 variants and their effect on the association between serum potassium and diabetes risk in the Atherosclerosis Risk in Communities (ARIC) Study and Jackson Heart Study (JHS) cohorts. PLoS One 13:e0203213
Hall, Gentzon; Lane, Brandon M; Khan, Kamal et al. (2018) The Human FSGS-Causing ANLN R431C Mutation Induces Dysregulated PI3K/AKT/mTOR/Rac1 Signaling in Podocytes. J Am Soc Nephrol 29:2110-2122
Wen, Yi; Crowley, Steven D (2018) Renal effects of cytokines in hypertension. Curr Opin Nephrol Hypertens 27:70-76
Abraham, Dennis M; Lee, Teresa E; Watson, Lewis J et al. (2018) The two-pore domain potassium channel TREK-1 mediates cardiac fibrosis and diastolic dysfunction. J Clin Invest 128:4843-4855

Showing the most recent 10 out of 106 publications