Chronic kidney disease is both a cause and consequence of hypertension (HTN), and both CKD and HTN are independent risk factors for cardiovascular disease (CVD). Thus CKD, CVD and HTN are closely inter-related, and the investigation of each in relation to the others holds the greatest promise for improving the public health. Clinical and translational research can advance understanding of these inter-relationships by evaluating the relevance of basic science discoveries to these conditions in humans, and by identifying associations in humans that warrant validation in biological systems. The Clinical and Translational Core of the Duke O'Brien Center for Kidney Research (DOCK) builds on an outstanding track record of human research in CKD, CVD and HTN. However, this research base has generally operated as 3 separate research agendas. The proposed Core will encourage and facilitate expansion of each area into multi-disciplinary research that addresses the thematic focus of DOCK: the kidney in hypertension and the unique links between the kidney and cardiovascular disease. The Core will capitalize on existing relationships of investigators in Duke Nephrology with the Duke Translational Medicine Institute (DTMI), the Duke Clinical Research Institute (DCRI), and other entities within DTMI. Core investigators will expand our understanding of mechanisms, translate and/or validate findings from the other Cores into human studies, and develop strategies for implementing effective interventions addressing our thematic area of focus. The proposed Clinical and Translational Core has four functional units: 1) a Study Implementation Group to provide oversight and project management; 2) a Biostatistics Unit to provide support for study design, data analysis, and data management; 3) a Biological Samples Unit to provide access to existing biological sample repositories; and 4) a Database Unit to provide access to existing clinical data repositories. These resources will provide foundational support for a wide range of clinical research approaches by a diverse, multidisciplinary group of clinical and translational investigators. This Core will foster collaboration and communication among Core investigators and across the other Cores within the DOCK, potentially leading to bi-directional translation of findings from clinic to bench and back. Thus the proposed Clinical and Translational Core will promote powerful interdisciplinary research that will move science forward in addressing the inter-relationships among CKD, CVD and HTN.

Public Health Relevance

Kidney disease, heart disease and high blood pressure are common conditions that exacerbate each other. The Clinical and Translational Core of the Duke O'Brien Center for Kidney Research will support human research, primarily through evaluation of data and biological samples collected in previous studies, to increase our understanding of the inter-relationships among these three conditions, research that will ultimately improve our ability to prevent and treat each of these conditions.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
4P30DK096493-05
Application #
9104149
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2016-07-01
Budget End
2017-06-30
Support Year
5
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Duke University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Wen, Yi; Crowley, Steven D (2018) Renal effects of cytokines in hypertension. Curr Opin Nephrol Hypertens 27:70-76
Abraham, Dennis M; Lee, Teresa E; Watson, Lewis J et al. (2018) The two-pore domain potassium channel TREK-1 mediates cardiac fibrosis and diastolic dysfunction. J Clin Invest 128:4843-4855
Chen, Po-Han; Chi, Jen-Tsan; Boyce, Michael (2018) Functional crosstalk among oxidative stress and O-GlcNAc signaling pathways. Glycobiology 28:556-564
Toth, Krisztian; Slosky, Lauren M; Pack, Thomas F et al. (2018) Ghrelin receptor antagonism of hyperlocomotion in cocaine-sensitized mice requires ?arrestin-2. Synapse 72:
Watt, Kevin M; Avant, Debbie; Sherwin, Jennifer et al. (2018) Effect of renal function on antihypertensive drug safety and efficacy in children. Pediatr Nephrol 33:139-146
Tyson, Crystal C; Barnhart, Huiman; Sapp, Shelly et al. (2018) Ambulatory blood pressure in the dash diet trial: Effects of race and albuminuria. J Clin Hypertens (Greenwich) 20:308-314
Diamantidis, Clarissa J; Bosworth, Hayden B; Oakes, Megan M et al. (2018) Simultaneous Risk Factor Control Using Telehealth to slOw Progression of Diabetic Kidney Disease (STOP-DKD) study: Protocol and baseline characteristics of a randomized controlled trial. Contemp Clin Trials 69:28-39
Rucker, A Justin; Rudemiller, Nathan P; Crowley, Steven D (2018) Salt, Hypertension, and Immunity. Annu Rev Physiol 80:283-307
van Haaster, Marloes C; McDonough, Alicia A; Gurley, Susan B (2018) Blood pressure regulation by the angiotensin type 1 receptor in the proximal tubule. Curr Opin Nephrol Hypertens 27:1-7
Hershberger, Kathleen A; Abraham, Dennis M; Liu, Juan et al. (2018) Ablation of Sirtuin5 in the postnatal mouse heart results in protein succinylation and normal survival in response to chronic pressure overload. J Biol Chem 293:10630-10645

Showing the most recent 10 out of 106 publications