This is the mission of the Biomolecular Mass Spectrometry Facility Core: ? provide exceptional support for environmental health-related research projects using state-of-the-art mass spectral analysis capabilities, ? develop new technologies with the ultimate goal of applying these new technologies to client projects, and ? serve as an educational platform for environmental health science research. The Biomolecular Mass Spectrometry Facility Core (BMSFC) gained its expertise in developing new instruments and ionization technologies over 30 years of measuring pesticides and toxicants in environmental samples. Persistent bioaccumulative toxicants are notoriously difficult to ionize and fragment by mass spectrometry. This challenge has driven much of our development efforts.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Center Core Grants (P30)
Project #
5P30ES000210-45
Application #
8448284
Study Section
Environmental Health Sciences Review Committee (EHS)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
45
Fiscal Year
2013
Total Cost
$208,863
Indirect Cost
$66,002
Name
Oregon State University
Department
Type
DUNS #
053599908
City
Corvallis
State
OR
Country
United States
Zip Code
97339
Nix, Cassandra E; Harper, Bryan J; Conner, Cathryn G et al. (2018) Toxicological Assessment of a Lignin Core Nanoparticle Doped with Silver as an Alternative to Conventional Silver Core Nanoparticles. Antibiotics (Basel) 7:
Geier, Mitra C; James Minick, D; Truong, Lisa et al. (2018) Systematic developmental neurotoxicity assessment of a representative PAH Superfund mixture using zebrafish. Toxicol Appl Pharmacol 354:115-125
Welch, Barrett; Smit, Ellen; Cardenas, Andres et al. (2018) Trends in urinary arsenic among the U.S. population by drinking water source: Results from the National Health and Nutritional Examinations Survey 2003-2014. Environ Res 162:8-17
Denluck, Lindsay; Wu, Fan; Crandon, Lauren E et al. (2018) Reactive oxygen species generation is likely a driver of copper based nanomaterial toxicity. Environ Sci Nano 5:1473-1481
Ahn, Soyoun; Magaña, Armando Alcazar; Bozarth, Connie et al. (2018) Integrated identification and quantification of cyanobacterial toxins from Pacific Northwest freshwaters by Liquid Chromatography and High-resolution Mass Spectrometry. J Mex Chem Soc 62:
Titaley, Ivan A; Ogba, O Maduka; Chibwe, Leah et al. (2018) Automating data analysis for two-dimensional gas chromatography/time-of-flight mass spectrometry non-targeted analysis of comparative samples. J Chromatogr A 1541:57-62
Geier, Mitra C; Chlebowski, Anna C; Truong, Lisa et al. (2018) Comparative developmental toxicity of a comprehensive suite of polycyclic aromatic hydrocarbons. Arch Toxicol 92:571-586
Bugel, Sean M; Tanguay, Robert L (2018) Multidimensional chemobehavior analysis of flavonoids and neuroactive compounds in zebrafish. Toxicol Appl Pharmacol 344:23-34
Gaulke, Christopher A; Rolshoven, John; Wong, Carmen P et al. (2018) Marginal Zinc Deficiency and Environmentally Relevant Concentrations of Arsenic Elicit Combined Effects on the Gut Microbiome. mSphere 3:
Roper, Courtney; Simonich, Staci L Massey; Tanguay, Robert L (2018) Development of a high-throughput in vivo screening platform for particulate matter exposures. Environ Pollut 235:993-1005

Showing the most recent 10 out of 690 publications