The overarching goal of the CEHS Integrative Health Sciences Facilities Core (IHSFC) is to facilitate the translation of CEHS members'basic research findings into clinical or public health applications. In the context of a research Institution that is not affiliated with a Medical School or a School of Public Health, the MIT CEHS contributes to the diversity of the NIEHS Core Centers Program with major strengths in fundamental science and engineering applied to problems in EHS and toxicology. The past decade has seen an evolution in CEHS research activities toward translational research, based on the pioneering studies of aflatoxin-induced liver cancer conducted by Gerald Wogan and coworkers in the CEHS. This evolution is evident in the intentional expansion of Center membership to embrace the state-of-the-art molecular epidemiological studies of David Hunter and Jiali Han at the Harvard School of Public Health and the Harvard Medical School, the emergence of human studies in the Molecular Biomarkers for Environmental Toxicants Program with Gerald Wogan, Steven Tannenbaum and others at Johns Hopkins University, and James Fox's studies of human cancer risk from environmental microbes in South America and Southeast Asia, just to mention a few. The CEHS leadership has now capitalized on this translational momentum with the creation of the CEHS IHSFC. It is important at the outset to define """"""""translation"""""""" in the context of the MIT CEHS. The activities that constitute translational research in environmental health science fall along a continuum, such as that shown below and adapted from a diagram prepared by Dr. Samuel Wilson of the NIEHS. The NIEHS defines translational research as, """"""""efforts along the spectrum of steps that transform scientific discoveries arising from laboratory, clinical, or population studies into clinical or population-based applications to reduce disease incidence, morbidity, and mortality."""""""" For the MIT CEHS, the steps in translation move research along the spectrum from molecules, pathways and networks, toward cells, tissues and organs, and ultimately moving all the way to whole organisms (mice or human) and to human populations. Each move to the right in the adjacent figure represents translational research. The historical experience of CEHS members reveals that the greatest hurdles to engaging in translational science are a lack of awareness of translational resources and the """"""""activation energy"""""""" needed to engage in translational research.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Center Core Grants (P30)
Project #
5P30ES002109-33
Application #
8466324
Study Section
Environmental Health Sciences Review Committee (EHS)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
33
Fiscal Year
2013
Total Cost
$49,263
Indirect Cost
$19,417
Name
Massachusetts Institute of Technology
Department
Type
DUNS #
001425594
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Edington, Collin D; Chen, Wen Li Kelly; Geishecker, Emily et al. (2018) Interconnected Microphysiological Systems for Quantitative Biology and Pharmacology Studies. Sci Rep 8:4530
Mannion, Anthony; Shen, Zeli; Feng, Yan et al. (2018) Gamma-glutamyltranspeptidase expression by Helicobacter saguini, an enterohepatic Helicobacter species isolated from cotton top tamarins with chronic colitis. Cell Microbiol :e12968
Tajai, Preechaya; Fedeles, Bogdan I; Suriyo, Tawit et al. (2018) An engineered cell line lacking OGG1 and MUTYH glycosylases implicates the accumulation of genomic 8-oxoguanine as the basis for paraquat mutagenicity. Free Radic Biol Med 116:64-72
Neumann, Wilma; Nolan, Elizabeth M (2018) Evaluation of a reducible disulfide linker for siderophore-mediated delivery of antibiotics. J Biol Inorg Chem 23:1025-1036
Pereira, Gavin C; Sanchez, Laura; Schaughency, Paul M et al. (2018) Properties of LINE-1 proteins and repeat element expression in the context of amyotrophic lateral sclerosis. Mob DNA 9:35
Wang, Lianrong; Jiang, Susu; Deng, Zixin et al. (2018) DNA phosphorothioate modification - a new multi-functional epigenetic system in bacteria. FEMS Microbiol Rev :
Rothenberg, Daniel A; Taliaferro, J Matthew; Huber, Sabrina M et al. (2018) A Proteomics Approach to Profiling the Temporal Translational Response to Stress and Growth. iScience 9:367-381
Brody, Yehuda; Kimmerling, Robert J; Maruvka, Yosef E et al. (2018) Quantification of somatic mutation flow across individual cell division events by lineage sequencing. Genome Res 28:1901-1918
Freedman, Adam J E; Peet, Kyle C; Boock, Jason T et al. (2018) Isolation, Development, and Genomic Analysis of Bacillus megaterium SR7 for Growth and Metabolite Production Under Supercritical Carbon Dioxide. Front Microbiol 9:2152
Dudani, Jaideep S; Ibrahim, Maria; Kirkpatrick, Jesse et al. (2018) Classification of prostate cancer using a protease activity nanosensor library. Proc Natl Acad Sci U S A 115:8954-8959

Showing the most recent 10 out of 970 publications