MISSION AND GOALS OF THE FUNCTIONAL GENOMICS &PROTEOMICS FACILITY CORE (FGP-FC) The FGP-FC plays a crucial role in supporting the Center's mission to identify the interactions between genetic, epigenetic and environmental factors that contribute to major chronic diseases. The FGP-FC does this by providing state-of-the-art genomics and proteomics technologies to investigate gene-environment interactions in the context of environmental health sciences research and population-based studies. MISSION AND GOALS OF THE EABM-FC Exposure assessment is the process of characterizing human contact with and uptake of agents from the environment (including the occupational environment). Given a particular agent, accurate quantification of exposure is critical for epidemiological studies that seek to define dose-response relationships and for risk assessment studies that quantify the probability of a harmful effect to exposed individuals or populations. Misclassification of exposure can lead to failure to adequately protect public health if the risk of harm is underestimated. Alternatively, if the health risk posed by a specific agent is overestimated due to inaccurate measures of exposure, scarce public health dollars are wasted needlessly. The overarching mission of EABM-FC is to provide state-of-the-art exposure assessment tools to CEEH invesfigators in order to reliably quantify exposure to agents in the environmental and subsequent health consequences and understand the role that gene-environment interactions play in modulating health outcomes

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Center Core Grants (P30)
Project #
5P30ES007033-18
Application #
8459596
Study Section
Environmental Health Sciences Review Committee (EHS)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
18
Fiscal Year
2013
Total Cost
$344,029
Indirect Cost
$123,498
Name
University of Washington
Department
Type
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Kim, Young Hun; Jo, Mi Seong; Kim, Jin Kwon et al. (2018) Short-term inhalation study of graphene oxide nanoplates. Nanotoxicology 12:224-238
Woods, Nancy Fugate; Cray, Lori A; Mitchell, Ellen Sullivan et al. (2018) Polymorphisms in Estrogen Synthesis Genes and Symptom Clusters During the Menopausal Transition and Early Postmenopause: Observations From the Seattle Midlife Women's Health Study. Biol Res Nurs 20:153-160
Lee, Ji Hyun; Gulumian, Mary; Faustman, Elaine M et al. (2018) Blood Biochemical and Hematological Study after Subacute Intravenous Injection of Gold and Silver Nanoparticles and Coadministered Gold and Silver Nanoparticles of Similar Sizes. Biomed Res Int 2018:8460910
Weldon, Brittany A; Griffith, William C; Workman, Tomomi et al. (2018) In vitro to in vivo benchmark dose comparisons to inform risk assessment of quantum dot nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 10:e1507
Dempsey, Joseph; Zhang, Angela; Cui, Julia Yue (2018) Coordinate regulation of long non-coding RNAs and protein-coding genes in germ-free mice. BMC Genomics 19:834
Rooney, James P K; Woods, Nancy F; Martin, Michael D et al. (2018) Genetic polymorphisms of GRIN2A and GRIN2B modify the neurobehavioral effects of low-level lead exposure in children. Environ Res 165:1-10
Chang, Yu-Chi; Cole, Toby B; Costa, Lucio G (2018) Prenatal and early-life diesel exhaust exposure causes autism-like behavioral changes in mice. Part Fibre Toxicol 15:18
Li, Cindy Yanfei; Dempsey, Joseph L; Wang, Dongfang et al. (2018) PBDEs Altered Gut Microbiome and Bile Acid Homeostasis in Male C57BL/6 Mice. Drug Metab Dispos 46:1226-1240
Khan, Burhan A; Robinson, Renee; Fohner, Alison E et al. (2018) Cytochrome P450 Genetic Variation Associated with Tamoxifen Biotransformation in American Indian and Alaska Native People. Clin Transl Sci 11:312-321
Tanner, Julie-Anne; Zhu, Andy Z; Claw, Katrina G et al. (2018) Novel CYP2A6 diplotypes identified through next-generation sequencing are associated with in-vitro and in-vivo nicotine metabolism. Pharmacogenet Genomics 28:7-16

Showing the most recent 10 out of 711 publications