Significant progress has been made in the assessment of the role of FLT3 mutations in AML. These have included analysis of FLT3-ITD expression alone, and in combination with cooperating alleles such as PML-RARa. Working with Project 1, Project 2 has been instrumental in preclinical development of FLT3 inhibitors by showing efficacy in murine models of disease, generating data from therapeutic trials in murine models of disease.
In Specific Aim 1, we will explore the in vivo activity of FLT3-ITD and activation loop alleles, and try to understand the relative predilection of FLT3-ITD for myeloid lineage disease and of the FLT3 actiavtion loopalleles for lymphoid disease. We will use multiparameter flow cytometry to test the hypothesis that these alleleshave differential effect on cell fate determination at the multipotent progenitor stage (MPP or LMPP) where FLT3 is highly expressed during hematopoietic development. We will try to understand the mechanism whereby FLT3ITD, in contrast with FLT3 WT, is a potent activator of STAT5 using mutations that abrogate this activity.
In Specific Aim 2, we will explore cooperating effects of these accurate genotypic models of FLT3-ITD mediated disease, working with Projects 3 and 4. These in turn will serve as useful in vivo models for testing novel combination therapies that are developed in Project 1.
In Specific Aim 3, we will develop murine models of myeloproliferative disease mediated by the JAK2V617F allele, use these models to understand phenotypicpleiotropy of disease in humans, and as a platform for testing novel JAK2 inhibitors for development of clinical trials in Project 5. Overall, this is a highly interactive Project that will build on a proven track record of success and preclinical development of novel therapies for myeloid malignancies. SA 1. Generation and characterization of accurate models of leukemia mediated by mutated FLT3 using knock-in strategies. We will characterize the phenotype of each of these alleles. a. Generation and characterization of a FLT3-ITD conditional knock-in allele b. Generation and characterization of FLT3 D835Y and I836del conditional knock-in alleles c. Generation of FLT3-ITD Y589F/Y598F conditional knock-in allele that is defective in signaling to STATS SA 2. Characterize the cooperative effects of these accurate genotypic models of FLT3-ITD mediated disease with crosses to other germline alleles a. FLT3-ITD KI crossed with Cathepsin G PML-RARalpha and C/EBPalpha knock-in alleles (Interaction with Tenen Project 3) b. FLT3-ITD I836del KI crossed with MIL fusion alleles (interaction with Armstrong, Project 4) c. FLT3-ITD KI crossed with AML1-ETO conditional KI allele Use these models to test combination therapy delineated in Project 1 that could include combination signal transduction inhibitors, ATRA, HDAC inhibitors, or HSP inhibitors SA 3. Develop accurate murine models of JAK2V617F mediated MPD a. Develop and characterize a retroviral transduction model of JAK2V617F disease b. Generate and characterize JAK2V617F conditional knock-in allele c. Characterize novel potentiating mutations of JAK2V617F disease including MPL d. Characterize novel JAK2 inhibitors in murine models as developed in Project 1

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Center Core Grants (P30)
Project #
Application #
Study Section
Environmental Health Sciences Review Committee (EHS)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Washington
United States
Zip Code
Schaupp, Christopher M; White, Collin C; Merrill, Gary F et al. (2015) Metabolism of doxorubicin to the cardiotoxic metabolite doxorubicinol is increased in a mouse model of chronic glutathione deficiency: A potential role for carbonyl reductase 3. Chem Biol Interact 234:154-61
Wegner, Susanna H; Yu, Xiaozhong; Pacheco Shubin, Sara et al. (2015) Stage-specific signaling pathways during murine testis development and spermatogenesis: A pathway-based analysis to quantify developmental dynamics. Reprod Toxicol 51:31-9
Cole, Toby B; Li, Wan-Fen; Co, Aila L et al. (2014) Repeated gestational exposure of mice to chlorpyrifos oxon is associated with paraoxonase 1 (PON1) modulated effects in maternal and fetal tissues. Toxicol Sci 141:409-22
Hiolski, Emma M; Kendrick, Preston S; Frame, Elizabeth R et al. (2014) Chronic low-level domoic acid exposure alters gene transcription and impairs mitochondrial function in the CNS. Aquat Toxicol 155:151-9
Penning, Trevor M; Breysse, Patrick N; Gray, Kathleen et al. (2014) Environmental health research recommendations from the Inter-Environmental Health Sciences Core Center Working Group on unconventional natural gas drilling operations. Environ Health Perspect 122:1155-9
Woods, James S; Heyer, Nicholas J; Russo, Joan E et al. (2014) Genetic polymorphisms affecting susceptibility to mercury neurotoxicity in children: summary findings from the Casa Pia Children's Amalgam clinical trial. Neurotoxicology 44:288-302
Pizzurro, Daniella M; Dao, Khoi; Costa, Lucio G (2014) Diazinon and diazoxon impair the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons. Toxicol Appl Pharmacol 274:372-82
Roth, J A; Boudreau, D; Fujii, M M et al. (2014) Genetic risk factors for major bleeding in patients treated with warfarin in a community setting. Clin Pharmacol Ther 95:636-43
Kemp, Christopher J; Moore, James M; Moser, Russell et al. (2014) CTCF haploinsufficiency destabilizes DNA methylation and predisposes to cancer. Cell Rep 7:1020-9
Woods, James S; Heyer, Nicholas J; Russo, Joan E et al. (2014) Genetic polymorphisms of catechol-O-methyltransferase modify the neurobehavioral effects of mercury in children. J Toxicol Environ Health A 77:293-312

Showing the most recent 10 out of 519 publications