The mission of the Community Outreach and Ethics Core (COEC) at the CEEH is to foster bi-directional capacity building between Center researchers and a broad range of professional and public stakeholders, with a special emphasis on the ethical, legal, and social implications of genetics, epigenetics, and environmental exposures research. Our COEC has a focus on building capacity and facilitating collaborations through internal investments, external partnerships, and investing in the next generation of environmental health and ecogenetics researchers. The Center is focusing on cutting edge, dynamic areas of science (epigenetics, transgenic animals, metabolomics, nanotoxicology) and it is essenfial, now more than ever, to keep the public engaged in the promise and future of research. We see our role as catalyst and connector to meet the needs and interests of trainees, Environmental Health Science (EHS) and Clinical and Translafional Science (CTS) researchers, and select community-based organizations and disease advocacy groups. For the next five years of the CEEH, we have identified four primary goals that capitalize on our strengths and expertise and support the overarching mission and goals of the Center.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Center Core Grants (P30)
Project #
Application #
Study Section
Environmental Health Sciences Review Committee (EHS)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Washington
United States
Zip Code
Schaupp, Christopher M; White, Collin C; Merrill, Gary F et al. (2015) Metabolism of doxorubicin to the cardiotoxic metabolite doxorubicinol is increased in a mouse model of chronic glutathione deficiency: A potential role for carbonyl reductase 3. Chem Biol Interact 234:154-61
Wegner, Susanna H; Yu, Xiaozhong; Pacheco Shubin, Sara et al. (2015) Stage-specific signaling pathways during murine testis development and spermatogenesis: A pathway-based analysis to quantify developmental dynamics. Reprod Toxicol 51:31-9
Cole, Toby B; Li, Wan-Fen; Co, Aila L et al. (2014) Repeated gestational exposure of mice to chlorpyrifos oxon is associated with paraoxonase 1 (PON1) modulated effects in maternal and fetal tissues. Toxicol Sci 141:409-22
Hiolski, Emma M; Kendrick, Preston S; Frame, Elizabeth R et al. (2014) Chronic low-level domoic acid exposure alters gene transcription and impairs mitochondrial function in the CNS. Aquat Toxicol 155:151-9
Penning, Trevor M; Breysse, Patrick N; Gray, Kathleen et al. (2014) Environmental health research recommendations from the Inter-Environmental Health Sciences Core Center Working Group on unconventional natural gas drilling operations. Environ Health Perspect 122:1155-9
Woods, James S; Heyer, Nicholas J; Russo, Joan E et al. (2014) Genetic polymorphisms affecting susceptibility to mercury neurotoxicity in children: summary findings from the Casa Pia Children's Amalgam clinical trial. Neurotoxicology 44:288-302
Pizzurro, Daniella M; Dao, Khoi; Costa, Lucio G (2014) Diazinon and diazoxon impair the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons. Toxicol Appl Pharmacol 274:372-82
Roth, J A; Boudreau, D; Fujii, M M et al. (2014) Genetic risk factors for major bleeding in patients treated with warfarin in a community setting. Clin Pharmacol Ther 95:636-43
Kemp, Christopher J; Moore, James M; Moser, Russell et al. (2014) CTCF haploinsufficiency destabilizes DNA methylation and predisposes to cancer. Cell Rep 7:1020-9
Woods, James S; Heyer, Nicholas J; Russo, Joan E et al. (2014) Genetic polymorphisms of catechol-O-methyltransferase modify the neurobehavioral effects of mercury in children. J Toxicol Environ Health A 77:293-312

Showing the most recent 10 out of 519 publications